Optimal. Leaf size=21 \[ (-4-3 x) \log ^2(5) \log ^2(x (2-\log (3))) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 36, normalized size of antiderivative = 1.71, number of steps used = 7, number of rules used = 5, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {14, 2346, 2301, 2295, 2296} \begin {gather*} -3 x \log ^2(5) \log ^2(x (2-\log (3)))-4 \log ^2(5) \log ^2(x (2-\log (3))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2296
Rule 2301
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 (-4-3 x) \log ^2(5) \log (x (2-\log (3)))}{x}-3 \log ^2(5) \log ^2(x (2-\log (3)))\right ) \, dx\\ &=\left (2 \log ^2(5)\right ) \int \frac {(-4-3 x) \log (x (2-\log (3)))}{x} \, dx-\left (3 \log ^2(5)\right ) \int \log ^2(x (2-\log (3))) \, dx\\ &=-3 x \log ^2(5) \log ^2(x (2-\log (3)))-\left (8 \log ^2(5)\right ) \int \frac {\log (x (2-\log (3)))}{x} \, dx\\ &=-4 \log ^2(5) \log ^2(x (2-\log (3)))-3 x \log ^2(5) \log ^2(x (2-\log (3)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.71 \begin {gather*} -4 \log ^2(5) \log ^2(x (2-\log (3)))-3 x \log ^2(5) \log ^2(x (2-\log (3))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 23, normalized size = 1.10 \begin {gather*} -{\left (3 \, x + 4\right )} \log \relax (5)^{2} \log \left (-x \log \relax (3) + 2 \, x\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 28, normalized size = 1.33 \begin {gather*} -{\left (3 \, x \log \relax (5)^{2} + 4 \, \log \relax (5)^{2}\right )} \log \left (-x \log \relax (3) + 2 \, x\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 1.33
method | result | size |
risch | \(\left (-3 x \ln \relax (5)^{2}-4 \ln \relax (5)^{2}\right ) \ln \left (-x \ln \relax (3)+2 x \right )^{2}\) | \(28\) |
norman | \(-4 \ln \relax (5)^{2} \ln \left (-x \ln \relax (3)+2 x \right )^{2}-3 x \ln \relax (5)^{2} \ln \left (-x \ln \relax (3)+2 x \right )^{2}\) | \(39\) |
derivativedivides | \(\frac {3 \ln \relax (5)^{2} \left (x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}-2 x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )+2 x \left (2-\ln \relax (3)\right )\right )}{\ln \relax (3)-2}-\frac {4 \ln \relax (5)^{2} \ln \relax (3) \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}}{\ln \relax (3)-2}+\frac {6 \ln \relax (5)^{2} \left (x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )-x \left (2-\ln \relax (3)\right )\right )}{\ln \relax (3)-2}+\frac {8 \ln \relax (5)^{2} \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}}{\ln \relax (3)-2}\) | \(148\) |
default | \(\frac {3 \ln \relax (5)^{2} \left (x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}-2 x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )+2 x \left (2-\ln \relax (3)\right )\right )}{\ln \relax (3)-2}-\frac {4 \ln \relax (5)^{2} \ln \relax (3) \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}}{\ln \relax (3)-2}+\frac {6 \ln \relax (5)^{2} \left (x \left (2-\ln \relax (3)\right ) \ln \left (x \left (2-\ln \relax (3)\right )\right )-x \left (2-\ln \relax (3)\right )\right )}{\ln \relax (3)-2}+\frac {8 \ln \relax (5)^{2} \ln \left (x \left (2-\ln \relax (3)\right )\right )^{2}}{\ln \relax (3)-2}\) | \(148\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 143, normalized size = 6.81 \begin {gather*} -8 \, \log \relax (5)^{2} \log \left (-x \log \relax (3) + 2 \, x\right ) \log \relax (x) + 4 \, {\left (2 \, \log \left (-x \log \relax (3) + 2 \, x\right ) \log \relax (x) - \log \relax (x)^{2} - 2 \, \log \relax (x) \log \left (-\log \relax (3) + 2\right )\right )} \log \relax (5)^{2} - \frac {3 \, {\left (x \log \relax (3) - 2 \, x\right )} {\left (\log \left (-x \log \relax (3) + 2 \, x\right )^{2} - 2 \, \log \left (-x \log \relax (3) + 2 \, x\right ) + 2\right )} \log \relax (5)^{2}}{\log \relax (3) - 2} + \frac {6 \, {\left (x \log \relax (3) - {\left (x \log \relax (3) - 2 \, x\right )} \log \left (-x \log \relax (3) + 2 \, x\right ) - 2 \, x\right )} \log \relax (5)^{2}}{\log \relax (3) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.29, size = 23, normalized size = 1.10 \begin {gather*} -{\ln \relax (5)}^2\,{\ln \left (2\,x-x\,\ln \relax (3)\right )}^2\,\left (3\,x+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.29 \begin {gather*} \left (- 3 x \log {\relax (5 )}^{2} - 4 \log {\relax (5 )}^{2}\right ) \log {\left (- x \log {\relax (3 )} + 2 x \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________