Optimal. Leaf size=23 \[ 5+e^{\frac {4+2 x}{x}} \left (\frac {26}{5}+x^2\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.47, antiderivative size = 31, normalized size of antiderivative = 1.35, number of steps used = 30, number of rules used = 10, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 14, 2210, 2214, 2206, 2554, 6483, 6475, 2209, 2226} \begin {gather*} e^{\frac {4}{x}+2} x^2 \log (x)+\frac {26}{5} e^{\frac {4}{x}+2} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2206
Rule 2209
Rule 2210
Rule 2214
Rule 2226
Rule 2554
Rule 6475
Rule 6483
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {4+2 x}{x}} \left (26 x+5 x^3\right )+e^{\frac {4+2 x}{x}} \left (-104-20 x^2+10 x^3\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {26 e^{2+\frac {4}{x}}}{x}+5 e^{2+\frac {4}{x}} x-20 e^{2+\frac {4}{x}} \log (x)-\frac {104 e^{2+\frac {4}{x}} \log (x)}{x^2}+10 e^{2+\frac {4}{x}} x \log (x)\right ) \, dx\\ &=2 \int e^{2+\frac {4}{x}} x \log (x) \, dx-4 \int e^{2+\frac {4}{x}} \log (x) \, dx+\frac {26}{5} \int \frac {e^{2+\frac {4}{x}}}{x} \, dx-\frac {104}{5} \int \frac {e^{2+\frac {4}{x}} \log (x)}{x^2} \, dx+\int e^{2+\frac {4}{x}} x \, dx\\ &=\frac {1}{2} e^{2+\frac {4}{x}} x^2-\frac {26}{5} e^2 \text {Ei}\left (\frac {4}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)+2 \int e^{2+\frac {4}{x}} \, dx-2 \int \left (\frac {1}{2} e^{2+\frac {4}{x}} (4+x)-\frac {8 e^2 \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx+4 \int e^2 \left (e^{4/x}-\frac {4 \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx+\frac {104}{5} \int -\frac {e^{2+\frac {4}{x}}}{4 x} \, dx\\ &=2 e^{2+\frac {4}{x}} x+\frac {1}{2} e^{2+\frac {4}{x}} x^2-\frac {26}{5} e^2 \text {Ei}\left (\frac {4}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)-\frac {26}{5} \int \frac {e^{2+\frac {4}{x}}}{x} \, dx+8 \int \frac {e^{2+\frac {4}{x}}}{x} \, dx+\left (4 e^2\right ) \int \left (e^{4/x}-\frac {4 \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx+\left (16 e^2\right ) \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-\int e^{2+\frac {4}{x}} (4+x) \, dx\\ &=2 e^{2+\frac {4}{x}} x+\frac {1}{2} e^{2+\frac {4}{x}} x^2-8 e^2 \text {Ei}\left (\frac {4}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)+\left (4 e^2\right ) \int e^{4/x} \, dx-\left (16 e^2\right ) \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-\int \left (4 e^{2+\frac {4}{x}}+e^{2+\frac {4}{x}} x\right ) \, dx\\ &=6 e^{2+\frac {4}{x}} x+\frac {1}{2} e^{2+\frac {4}{x}} x^2-8 e^2 \text {Ei}\left (\frac {4}{x}\right )-16 e^2 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)-4 \int e^{2+\frac {4}{x}} \, dx+\left (16 e^2\right ) \int \frac {e^{4/x}}{x} \, dx+\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )+\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-\int e^{2+\frac {4}{x}} x \, dx\\ &=2 e^{2+\frac {4}{x}} x-24 e^2 \text {Ei}\left (\frac {4}{x}\right )-\frac {64 e^2 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}-8 e^2 \log ^2\left (-\frac {4}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+16 e^2 \gamma \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)-2 \int e^{2+\frac {4}{x}} \, dx-16 \int \frac {e^{2+\frac {4}{x}}}{x} \, dx-\left (16 e^2\right ) \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )\\ &=-8 e^2 \text {Ei}\left (\frac {4}{x}\right )+\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)-8 \int \frac {e^{2+\frac {4}{x}}}{x} \, dx\\ &=\frac {26}{5} e^{2+\frac {4}{x}} \log (x)+e^{2+\frac {4}{x}} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.96 \begin {gather*} \frac {1}{5} e^{2+\frac {4}{x}} \left (26+5 x^2\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{5} \, {\left (5 \, x^{2} + 26\right )} e^{\left (\frac {2 \, {\left (x + 2\right )}}{x}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 29, normalized size = 1.26 \begin {gather*} x^{2} e^{\left (\frac {2 \, {\left (x + 2\right )}}{x}\right )} \log \relax (x) + \frac {26}{5} \, e^{\left (\frac {2 \, {\left (x + 2\right )}}{x}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.91
method | result | size |
risch | \(\frac {\left (5 x^{2}+26\right ) {\mathrm e}^{\frac {2 x +4}{x}} \ln \relax (x )}{5}\) | \(21\) |
norman | \(\frac {x^{3} {\mathrm e}^{\frac {2 x +4}{x}} \ln \relax (x )+\frac {26 x \,{\mathrm e}^{\frac {2 x +4}{x}} \ln \relax (x )}{5}}{x}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {26}{5} \, {\rm Ei}\left (\frac {4}{x}\right ) e^{2} + 16 \, e^{2} \Gamma \left (-2, -\frac {4}{x}\right ) + \frac {1}{5} \, \int \frac {2 \, {\left (5 \, x^{3} e^{2} - 10 \, x^{2} e^{2} - 52 \, e^{2}\right )} e^{\frac {4}{x}} \log \relax (x)}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.49, size = 19, normalized size = 0.83 \begin {gather*} \frac {{\mathrm {e}}^{\frac {4}{x}+2}\,\ln \relax (x)\,\left (5\,x^2+26\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 0.96 \begin {gather*} \frac {\left (5 x^{2} \log {\relax (x )} + 26 \log {\relax (x )}\right ) e^{\frac {2 x + 4}{x}}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________