Optimal. Leaf size=23 \[ \log \left (\frac {1}{2} e^{\frac {-2+(-5+x) x}{x}} \left (e^x+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+x^2+x^3+e^x \left (2+2 x^2\right )}{e^x x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {-1+x}{e^x+x}+\frac {2 \left (1+x^2\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {1+x^2}{x^2} \, dx-\int \frac {-1+x}{e^x+x} \, dx\\ &=2 \int \left (1+\frac {1}{x^2}\right ) \, dx-\int \left (-\frac {1}{e^x+x}+\frac {x}{e^x+x}\right ) \, dx\\ &=-\frac {2}{x}+2 x+\int \frac {1}{e^x+x} \, dx-\int \frac {x}{e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 13, normalized size = 0.57 \begin {gather*} -\frac {2}{x}+x+\log \left (e^x+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 16, normalized size = 0.70 \begin {gather*} \frac {x^{2} + x \log \left (x + e^{x}\right ) - 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 16, normalized size = 0.70 \begin {gather*} \frac {x^{2} + x \log \left (x + e^{x}\right ) - 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 13, normalized size = 0.57
method | result | size |
risch | \(x -\frac {2}{x}+\ln \left ({\mathrm e}^{x}+x \right )\) | \(13\) |
norman | \(\frac {x^{2}-2}{x}+\ln \left ({\mathrm e}^{x}+x \right )\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 15, normalized size = 0.65 \begin {gather*} \frac {x^{2} - 2}{x} + \log \left (x + e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 15, normalized size = 0.65 \begin {gather*} \ln \left (x+{\mathrm {e}}^x\right )+\frac {x^2-2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.43 \begin {gather*} x + \log {\left (x + e^{x} \right )} - \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________