Optimal. Leaf size=25 \[ x+e^x x^2-\frac {2}{5 \log \left (\frac {x}{\frac {1}{x}+x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 6, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {1593, 6688, 2196, 2176, 2194, 6686} \begin {gather*} e^x x^2-\frac {2}{5 \log \left (\frac {x^2}{x^2+1}\right )}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4+\left (5 x+5 x^3+e^x \left (10 x^2+5 x^3+10 x^4+5 x^5\right )\right ) \log ^2\left (\frac {x^2}{1+x^2}\right )}{x \left (5+5 x^2\right ) \log ^2\left (\frac {x^2}{1+x^2}\right )} \, dx\\ &=\int \left (1+e^x x (2+x)+\frac {4}{5 x \left (1+x^2\right ) \log ^2\left (\frac {x^2}{1+x^2}\right )}\right ) \, dx\\ &=x+\frac {4}{5} \int \frac {1}{x \left (1+x^2\right ) \log ^2\left (\frac {x^2}{1+x^2}\right )} \, dx+\int e^x x (2+x) \, dx\\ &=x-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )}+\int \left (2 e^x x+e^x x^2\right ) \, dx\\ &=x-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )}+2 \int e^x x \, dx+\int e^x x^2 \, dx\\ &=x+2 e^x x+e^x x^2-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )}-2 \int e^x \, dx-2 \int e^x x \, dx\\ &=-2 e^x+x+e^x x^2-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )}+2 \int e^x \, dx\\ &=x+e^x x^2-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 27, normalized size = 1.08 \begin {gather*} x+e^x x^2-\frac {2}{5 \log \left (\frac {x^2}{1+x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 40, normalized size = 1.60 \begin {gather*} \frac {5 \, {\left (x^{2} e^{x} + x\right )} \log \left (\frac {x^{2}}{x^{2} + 1}\right ) - 2}{5 \, \log \left (\frac {x^{2}}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 52, normalized size = 2.08 \begin {gather*} \frac {5 \, x^{2} e^{x} \log \left (\frac {x^{2}}{x^{2} + 1}\right ) + 5 \, x \log \left (\frac {x^{2}}{x^{2} + 1}\right ) - 2}{5 \, \log \left (\frac {x^{2}}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 25, normalized size = 1.00
method | result | size |
default | \(x -\frac {2}{5 \ln \left (\frac {x^{2}}{x^{2}+1}\right )}+{\mathrm e}^{x} x^{2}\) | \(25\) |
risch | \({\mathrm e}^{x} x^{2}+x -\frac {4 i}{5 \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}+1}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{x^{2}+1}\right )-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{x^{2}+1}\right )^{2}-\pi \,\mathrm {csgn}\left (\frac {i}{x^{2}+1}\right ) \mathrm {csgn}\left (\frac {i x^{2}}{x^{2}+1}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i x^{2}}{x^{2}+1}\right )^{3}+4 i \ln \relax (x )-2 i \ln \left (x^{2}+1\right )\right )}\) | \(181\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 23, normalized size = 0.92 \begin {gather*} x^{2} e^{x} + x + \frac {2}{5 \, {\left (\log \left (x^{2} + 1\right ) - 2 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.34, size = 27, normalized size = 1.08 \begin {gather*} x-\frac {2}{5\,\left (\ln \left (x^2\right )-\ln \left (x^2+1\right )\right )}+x^2\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 20, normalized size = 0.80 \begin {gather*} x^{2} e^{x} + x - \frac {2}{5 \log {\left (\frac {x^{2}}{x^{2} + 1} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________