Optimal. Leaf size=19 \[ 5 \left (-5+e^x+e^{x^{2/x}}+x+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5 x+5 x^2+5 e^x x^2+e^{x^{2/x}} x^{2/x} (10-10 \log (x))}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 \left (1+x+e^x x\right )}{x}-10 e^{x^{2/x}} x^{-2+\frac {2}{x}} (-1+\log (x))\right ) \, dx\\ &=5 \int \frac {1+x+e^x x}{x} \, dx-10 \int e^{x^{2/x}} x^{-2+\frac {2}{x}} (-1+\log (x)) \, dx\\ &=5 \int \left (e^x+\frac {1+x}{x}\right ) \, dx-10 \int \left (-e^{x^{2/x}} x^{-2+\frac {2}{x}}+e^{x^{2/x}} x^{-2+\frac {2}{x}} \log (x)\right ) \, dx\\ &=5 \int e^x \, dx+5 \int \frac {1+x}{x} \, dx+10 \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx-10 \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \log (x) \, dx\\ &=5 e^x+5 \int \left (1+\frac {1}{x}\right ) \, dx+10 \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx+10 \int \frac {\int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx}{x} \, dx-(10 \log (x)) \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx\\ &=5 e^x+5 x+5 \log (x)+10 \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx+10 \int \frac {\int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx}{x} \, dx-(10 \log (x)) \int e^{x^{2/x}} x^{-2+\frac {2}{x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 18, normalized size = 0.95 \begin {gather*} 5 \left (e^x+e^{x^{2/x}}+x+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 22, normalized size = 1.16 \begin {gather*} 5 \, x + 5 \, e^{\left (x^{\frac {2}{x}}\right )} + 5 \, e^{x} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, {\left (x^{2} e^{x} - 2 \, x^{\frac {2}{x}} {\left (\log \relax (x) - 1\right )} e^{\left (x^{\frac {2}{x}}\right )} + x^{2} + x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 1.21
method | result | size |
risch | \(5 x +5 \ln \relax (x )+5 \,{\mathrm e}^{x}+5 \,{\mathrm e}^{x^{\frac {2}{x}}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 22, normalized size = 1.16 \begin {gather*} 5 \, x + 5 \, e^{\left (x^{\frac {2}{x}}\right )} + 5 \, e^{x} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.47, size = 22, normalized size = 1.16 \begin {gather*} 5\,x+5\,{\mathrm {e}}^{x^{2/x}}+5\,{\mathrm {e}}^x+5\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 24, normalized size = 1.26 \begin {gather*} 5 x + 5 e^{x} + 5 e^{e^{\frac {2 \log {\relax (x )}}{x}}} + 5 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________