Optimal. Leaf size=14 \[ \frac {15 \log \left (x^2\right )}{\log (3+2 x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-30 x \log \left (x^2\right )+(90+60 x) \log (3+2 x)}{\left (3 x+2 x^2\right ) \log ^2(3+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-30 x \log \left (x^2\right )+(90+60 x) \log (3+2 x)}{x (3+2 x) \log ^2(3+2 x)} \, dx\\ &=\int \left (-\frac {30 \log \left (x^2\right )}{(3+2 x) \log ^2(3+2 x)}+\frac {30}{x \log (3+2 x)}\right ) \, dx\\ &=-\left (30 \int \frac {\log \left (x^2\right )}{(3+2 x) \log ^2(3+2 x)} \, dx\right )+30 \int \frac {1}{x \log (3+2 x)} \, dx\\ &=-\left (15 \operatorname {Subst}\left (\int \frac {\log \left (\left (-\frac {3}{2}+\frac {x}{2}\right )^2\right )}{x \log ^2(x)} \, dx,x,3+2 x\right )\right )+30 \int \frac {1}{x \log (3+2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 14, normalized size = 1.00 \begin {gather*} \frac {15 \log \left (x^2\right )}{\log (3+2 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 14, normalized size = 1.00 \begin {gather*} \frac {15 \, \log \left (x^{2}\right )}{\log \left (2 \, x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 14, normalized size = 1.00 \begin {gather*} \frac {15 \, \log \left (x^{2}\right )}{\log \left (2 \, x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 65, normalized size = 4.64
method | result | size |
risch | \(\frac {30 \ln \relax (x )-\frac {15 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}+15 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {15 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}}{\ln \left (2 x +3\right )}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 12, normalized size = 0.86 \begin {gather*} \frac {30 \, \log \relax (x)}{\log \left (2 \, x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.39, size = 14, normalized size = 1.00 \begin {gather*} \frac {15\,\ln \left (x^2\right )}{\ln \left (2\,x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 12, normalized size = 0.86 \begin {gather*} \frac {15 \log {\left (x^{2} \right )}}{\log {\left (2 x + 3 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________