Optimal. Leaf size=40 \[ x^2-\log \left (x-\frac {x^2}{4-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32+e^{\frac {-1+9 x}{x}}+14 x+64 x^2-16 x^3+\left (16-4 x-32 x^2+4 x^3\right ) \log \left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )+\left (-2+4 x^2\right ) \log ^2\left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )}{32 x-8 x^2+\left (-16 x+2 x^2\right ) \log \left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )+2 x \log ^2\left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32+e^{\frac {-1+9 x}{x}}+14 x+64 x^2-16 x^3+\left (16-4 x-32 x^2+4 x^3\right ) \log \left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )+\left (-2+4 x^2\right ) \log ^2\left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )}{2 x \left (4-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (4-x-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx\\ &=\frac {1}{2} \int \frac {-32+e^{\frac {-1+9 x}{x}}+14 x+64 x^2-16 x^3+\left (16-4 x-32 x^2+4 x^3\right ) \log \left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )+\left (-2+4 x^2\right ) \log ^2\left (\frac {e^{\frac {1}{2} e^{\frac {-1+9 x}{x}}}}{x}\right )}{x \left (4-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (4-x-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {14}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {32}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}+\frac {e^{9-\frac {1}{x}}}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}+\frac {64 x}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {16 x^2}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}+\frac {4 \left (4-x-8 x^2+x^3\right ) \log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}+\frac {2 \left (-1+2 x^2\right ) \log ^2\left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{9-\frac {1}{x}}}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+2 \int \frac {\left (4-x-8 x^2+x^3\right ) \log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+7 \int \frac {1}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx-8 \int \frac {x^2}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx-16 \int \frac {1}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+32 \int \frac {x}{\left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+\int \frac {\left (-1+2 x^2\right ) \log ^2\left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right ) \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {e^{9-\frac {1}{x}}}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {e^{9-\frac {1}{x}}}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx+2 \int \left (\frac {4 \left (4-x-8 x^2+x^3\right )}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}+\frac {(-4+x) \left (4-x-8 x^2+x^3\right )}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx+7 \int \left (\frac {1}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {1}{x \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx-8 \int \left (\frac {x}{-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}-\frac {x}{-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}\right ) \, dx-16 \int \left (\frac {1}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {1}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx+32 \int \left (\frac {1}{4-x-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}+\frac {1}{-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )}\right ) \, dx+\int \left (\frac {-1+2 x^2}{x}+\frac {16 \left (-1+2 x^2\right )}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}-\frac {(-4+x)^2 \left (-1+2 x^2\right )}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{9-\frac {1}{x}}}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx-\frac {1}{2} \int \frac {e^{9-\frac {1}{x}}}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+2 \int \frac {(-4+x) \left (4-x-8 x^2+x^3\right )}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+7 \int \frac {1}{x \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx-7 \int \frac {1}{x \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx-8 \int \frac {x}{-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )} \, dx+8 \int \frac {4-x-8 x^2+x^3}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+8 \int \frac {x}{-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )} \, dx-16 \int \frac {1}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+16 \int \frac {-1+2 x^2}{x^2 \left (-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+16 \int \frac {1}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx+32 \int \frac {1}{4-x-\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )} \, dx+32 \int \frac {1}{-4+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )} \, dx+\int \frac {-1+2 x^2}{x} \, dx-\int \frac {(-4+x)^2 \left (-1+2 x^2\right )}{x^2 \left (-4+x+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 145, normalized size = 3.62 \begin {gather*} \frac {1}{2} \left (2 x^2-2 \log (x)+2 \log \left (8-e^{9-\frac {1}{x}}-2 \log \left (\frac {1}{x}\right )-2 \left (-\frac {1}{2} e^{9-\frac {1}{x}}-\log \left (\frac {1}{x}\right )+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )\right )-2 \log \left (8-e^{9-\frac {1}{x}}-2 x-2 \log \left (\frac {1}{x}\right )-2 \left (-\frac {1}{2} e^{9-\frac {1}{x}}-\log \left (\frac {1}{x}\right )+\log \left (\frac {e^{\frac {1}{2} e^{9-\frac {1}{x}}}}{x}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 79, normalized size = 1.98 \begin {gather*} x^{2} - \frac {1}{2} \, e^{\left (\frac {9 \, x - 1}{x}\right )} - \log \left (x + \log \left (\frac {e^{\left (\frac {1}{2} \, e^{\left (\frac {9 \, x - 1}{x}\right )}\right )}}{x}\right ) - 4\right ) + \log \left (\frac {e^{\left (\frac {1}{2} \, e^{\left (\frac {9 \, x - 1}{x}\right )}\right )}}{x}\right ) + \log \left (\log \left (\frac {e^{\left (\frac {1}{2} \, e^{\left (\frac {9 \, x - 1}{x}\right )}\right )}}{x}\right ) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.20, size = 357, normalized size = 8.92
method | result | size |
risch | \(x^{2}-\ln \relax (x )+\ln \left (\ln \left ({\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{3}-2 i \ln \relax (x )-8 i\right )}{2}\right )-\ln \left (\ln \left ({\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{\frac {{\mathrm e}^{\frac {9 x -1}{x}}}{2}}}{x}\right )^{3}+2 i x -2 i \ln \relax (x )-8 i\right )}{2}\right )\) | \(357\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 77, normalized size = 1.92 \begin {gather*} x^{2} - \log \relax (x) - \log \left (-x + \log \relax (x) + 4\right ) - \log \left (\frac {2 \, {\left (x - \log \relax (x) - 4\right )} e^{\frac {1}{x}} + e^{9}}{2 \, {\left (x - \log \relax (x) - 4\right )}}\right ) + \log \left (\frac {2 \, {\left (\log \relax (x) + 4\right )} e^{\frac {1}{x}} - e^{9}}{2 \, {\left (\log \relax (x) + 4\right )}}\right ) + \log \left (\log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {14\,x+{\mathrm {e}}^{\frac {9\,x-1}{x}}-\ln \left (\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {9\,x-1}{x}}}{2}}}{x}\right )\,\left (-4\,x^3+32\,x^2+4\,x-16\right )+{\ln \left (\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {9\,x-1}{x}}}{2}}}{x}\right )}^2\,\left (4\,x^2-2\right )+64\,x^2-16\,x^3-32}{32\,x-\ln \left (\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {9\,x-1}{x}}}{2}}}{x}\right )\,\left (16\,x-2\,x^2\right )+2\,x\,{\ln \left (\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {9\,x-1}{x}}}{2}}}{x}\right )}^2-8\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.56, size = 44, normalized size = 1.10 \begin {gather*} x^{2} - \log {\relax (x )} + \log {\left (\log {\left (\frac {e^{\frac {e^{\frac {9 x - 1}{x}}}{2}}}{x} \right )} - 4 \right )} - \log {\left (x + \log {\left (\frac {e^{\frac {e^{\frac {9 x - 1}{x}}}{2}}}{x} \right )} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________