Optimal. Leaf size=22 \[ -5+e^{\frac {11 x}{4}+\frac {x^4}{1+x^4}}+x \]
________________________________________________________________________________________
Rubi [F] time = 1.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+8 x^4+4 x^8+e^{\frac {11 x+4 x^4+11 x^5}{4+4 x^4}} \left (11+16 x^3+22 x^4+11 x^8\right )}{4+8 x^4+4 x^8} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {4+8 x^4+4 x^8+e^{\frac {11 x+4 x^4+11 x^5}{4+4 x^4}} \left (11+16 x^3+22 x^4+11 x^8\right )}{\left (4+4 x^4\right )^2} \, dx\\ &=4 \int \left (\frac {1}{4}+\frac {e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} \left (11+16 x^3+22 x^4+11 x^8\right )}{16 \left (1+x^4\right )^2}\right ) \, dx\\ &=x+\frac {1}{4} \int \frac {e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} \left (11+16 x^3+22 x^4+11 x^8\right )}{\left (1+x^4\right )^2} \, dx\\ &=x+\frac {1}{4} \int \left (11 e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}}+\frac {16 e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x^3}{\left (1+x^4\right )^2}\right ) \, dx\\ &=x+\frac {11}{4} \int e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} \, dx+4 \int \frac {e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x^3}{\left (1+x^4\right )^2} \, dx\\ &=x+\frac {11}{4} \int e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} \, dx+4 \int \left (-\frac {i e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x}{4 \left (i-x^2\right )^2}+\frac {i e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x}{4 \left (i+x^2\right )^2}\right ) \, dx\\ &=x-i \int \frac {e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x}{\left (i-x^2\right )^2} \, dx+i \int \frac {e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} x}{\left (i+x^2\right )^2} \, dx+\frac {11}{4} \int e^{\frac {x \left (11+4 x^3+11 x^4\right )}{4 \left (1+x^4\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 28, normalized size = 1.27 \begin {gather*} \frac {1}{4} \left (4 e^{1+\frac {11 x}{4}-\frac {1}{1+x^4}}+4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 26, normalized size = 1.18 \begin {gather*} x + e^{\left (\frac {11 \, x^{5} + 4 \, x^{4} + 11 \, x}{4 \, {\left (x^{4} + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 26, normalized size = 1.18 \begin {gather*} x + e^{\left (\frac {11 \, x^{5} + 4 \, x^{4} + 11 \, x}{4 \, {\left (x^{4} + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 26, normalized size = 1.18
method | result | size |
risch | \(x +{\mathrm e}^{\frac {x \left (11 x^{4}+4 x^{3}+11\right )}{4 x^{4}+4}}\) | \(26\) |
norman | \(\frac {x +x^{5}+x^{4} {\mathrm e}^{\frac {11 x^{5}+4 x^{4}+11 x}{4 x^{4}+4}}+{\mathrm e}^{\frac {11 x^{5}+4 x^{4}+11 x}{4 x^{4}+4}}}{x^{4}+1}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 17, normalized size = 0.77 \begin {gather*} x + e^{\left (\frac {11}{4} \, x - \frac {1}{x^{4} + 1} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.03, size = 46, normalized size = 2.09 \begin {gather*} x+{\mathrm {e}}^{\frac {11\,x}{4\,x^4+4}}\,{\mathrm {e}}^{\frac {4\,x^4}{4\,x^4+4}}\,{\mathrm {e}}^{\frac {11\,x^5}{4\,x^4+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 22, normalized size = 1.00 \begin {gather*} x + e^{\frac {11 x^{5} + 4 x^{4} + 11 x}{4 x^{4} + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________