Optimal. Leaf size=31 \[ 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \]
________________________________________________________________________________________
Rubi [F] time = 5.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4^{-5+e^{5 e x}} \left (e^{-\frac {-5+x^2}{x}}\right )^{-5+e^{5 e x}} \left (25+5 x^2+e^{5 e x} \left (-5-x^2\right )+5 e^{1+5 e x} x^2 \log \left (4 e^{-\frac {-5+x^2}{x}}\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (25+5 x^2+e^{5 e x} \left (-5-x^2\right )+5 e^{1+5 e x} x^2 \log \left (4 e^{-\frac {-5+x^2}{x}}\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {5\ 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (5+x^2\right )}{x^2}+\frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (-5-x^2+5 e x^2 \log \left (4 e^{\frac {5}{x}-x}\right )\right )}{x^2}\right ) \, dx\\ &=5 \int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (5+x^2\right )}{x^2} \, dx+\int \frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (-5-x^2+5 e x^2 \log \left (4 e^{\frac {5}{x}-x}\right )\right )}{x^2} \, dx\\ &=5 \int \left (4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}+\frac {5\ 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2}\right ) \, dx+\int \left (\frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (-5-x^2\right )}{x^2}+5\ 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \log \left (4 e^{\frac {5}{x}-x}\right )\right ) \, dx\\ &=5 \int 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx+5 \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \log \left (4 e^{\frac {5}{x}-x}\right ) \, dx+25 \int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx+\int \frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \left (-5-x^2\right )}{x^2} \, dx\\ &=5 \int 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-5 \int \left (-1-\frac {5}{x^2}\right ) \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx \, dx+25 \int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx+\left (5 \log \left (4 e^{\frac {5}{x}-x}\right )\right ) \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx+\int \left (-4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}-\frac {5\ 4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2}\right ) \, dx\\ &=5 \int 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-5 \int \frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx-5 \int \left (-\int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-\frac {5 \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx}{x^2}\right ) \, dx+25 \int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx+\left (5 \log \left (4 e^{\frac {5}{x}-x}\right )\right ) \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-\int 4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx\\ &=5 \int 4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-5 \int \frac {4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx+5 \int \left (\int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx\right ) \, dx+25 \int \frac {4^{-5+e^{5 e x}} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}}}{x^2} \, dx+25 \int \frac {\int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx}{x^2} \, dx+\left (5 \log \left (4 e^{\frac {5}{x}-x}\right )\right ) \int 4^{-5+e^{5 e x}} e^{1+5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx-\int 4^{-5+e^{5 e x}} e^{5 e x} \left (e^{\frac {5}{x}-x}\right )^{-5+e^{5 e x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.74, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4^{-5+e^{5 e x}} \left (e^{-\frac {-5+x^2}{x}}\right )^{-5+e^{5 e x}} \left (25+5 x^2+e^{5 e x} \left (-5-x^2\right )+5 e^{1+5 e x} x^2 \log \left (4 e^{-\frac {-5+x^2}{x}}\right )\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 44, normalized size = 1.42 \begin {gather*} e^{\left (-\frac {{\left (10 \, x e \log \relax (2) - 5 \, {\left (x^{2} - 5\right )} e + {\left (x^{2} - 2 \, x \log \relax (2) - 5\right )} e^{\left (5 \, x e + 1\right )}\right )} e^{\left (-1\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (5 \, x^{2} e^{\left (5 \, x e + 1\right )} \log \left (4 \, e^{\left (-\frac {x^{2} - 5}{x}\right )}\right ) + 5 \, x^{2} - {\left (x^{2} + 5\right )} e^{\left (5 \, x e\right )} + 25\right )} \left (4 \, e^{\left (-\frac {x^{2} - 5}{x}\right )}\right )^{e^{\left (5 \, x e\right )} - 5}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 26, normalized size = 0.84
method | result | size |
default | \({\mathrm e}^{\left ({\mathrm e}^{5 x \,{\mathrm e}}-5\right ) \ln \left (4 \,{\mathrm e}^{-\frac {x^{2}-5}{x}}\right )}\) | \(26\) |
risch | \({\mathrm e}^{\left ({\mathrm e}^{5 x \,{\mathrm e}}-5\right ) \left (2 \ln \relax (2)-\ln \left ({\mathrm e}^{\frac {x^{2}-5}{x}}\right )\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 42, normalized size = 1.35 \begin {gather*} \frac {1}{1024} \, e^{\left (-x e^{\left (5 \, x e\right )} + 2 \, e^{\left (5 \, x e\right )} \log \relax (2) + 5 \, x + \frac {5 \, e^{\left (5 \, x e\right )}}{x} - \frac {25}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.90, size = 44, normalized size = 1.42 \begin {gather*} \frac {2^{2\,{\mathrm {e}}^{5\,x\,\mathrm {e}}}\,{\mathrm {e}}^{5\,x}\,{\mathrm {e}}^{\frac {5\,{\mathrm {e}}^{5\,x\,\mathrm {e}}}{x}}\,{\mathrm {e}}^{-\frac {25}{x}}\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{5\,x\,\mathrm {e}}}}{1024} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________