Optimal. Leaf size=25 \[ -1-e^{e^{10+\frac {x^2}{2}}-x+x^2}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 1, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {6706} \begin {gather*} x-e^{x^2+e^{\frac {1}{2} \left (x^2+20\right )}-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{e^{\frac {1}{2} \left (20+x^2\right )}-x+x^2} \left (1-2 x-e^{\frac {1}{2} \left (20+x^2\right )} x\right ) \, dx\\ &=-e^{e^{\frac {1}{2} \left (20+x^2\right )}-x+x^2}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 24, normalized size = 0.96 \begin {gather*} -e^{e^{10+\frac {x^2}{2}}-x+x^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 20, normalized size = 0.80 \begin {gather*} x - e^{\left (x^{2} - x + e^{\left (\frac {1}{2} \, x^{2} + 10\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 0.80 \begin {gather*} x - e^{\left (x^{2} - x + e^{\left (\frac {1}{2} \, x^{2} + 10\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 0.84
method | result | size |
risch | \(x -{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{2}+10}+x^{2}-x}\) | \(21\) |
default | \(x -{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{2}+10}+x^{2}-x}\) | \(23\) |
norman | \(x -{\mathrm e}^{{\mathrm e}^{\frac {x^{2}}{2}+10}+x^{2}-x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 20, normalized size = 0.80 \begin {gather*} x - e^{\left (x^{2} - x + e^{\left (\frac {1}{2} \, x^{2} + 10\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 27, normalized size = 1.08 \begin {gather*} -{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^{x^2}\,{\mathrm {e}}^{{\mathrm {e}}^{10}\,{\mathrm {e}}^{\frac {x^2}{2}}}-x\,{\mathrm {e}}^x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 15, normalized size = 0.60 \begin {gather*} x - e^{x^{2} - x + e^{\frac {x^{2}}{2} + 10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________