Optimal. Leaf size=23 \[ -4-e^{4 \left (-2+3 e^5+x^2\right )} (-4+x)+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 42, normalized size of antiderivative = 1.83, number of steps used = 8, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {14, 2226, 2204, 2209, 2212} \begin {gather*} -e^{4 x^2-4 \left (2-3 e^5\right )} x+4 e^{4 x^2-4 \left (2-3 e^5\right )}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2204
Rule 2209
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}-e^{-8+12 e^5+4 x^2} \left (1-32 x+8 x^2\right )\right ) \, dx\\ &=\log (x)-\int e^{-8+12 e^5+4 x^2} \left (1-32 x+8 x^2\right ) \, dx\\ &=\log (x)-\int \left (e^{-8+12 e^5+4 x^2}-32 e^{-8+12 e^5+4 x^2} x+8 e^{-8+12 e^5+4 x^2} x^2\right ) \, dx\\ &=\log (x)-8 \int e^{-8+12 e^5+4 x^2} x^2 \, dx+32 \int e^{-8+12 e^5+4 x^2} x \, dx-\int e^{-8+12 e^5+4 x^2} \, dx\\ &=4 e^{-4 \left (2-3 e^5\right )+4 x^2}-e^{-4 \left (2-3 e^5\right )+4 x^2} x-\frac {1}{4} e^{-8+12 e^5} \sqrt {\pi } \text {erfi}(2 x)+\log (x)+\int e^{-8+12 e^5+4 x^2} \, dx\\ &=4 e^{-4 \left (2-3 e^5\right )+4 x^2}-e^{-4 \left (2-3 e^5\right )+4 x^2} x+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 33, normalized size = 1.43 \begin {gather*} \frac {e^{4 \left (-2+3 e^5+x^2\right )} \left (32 x-8 x^2\right )}{8 x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 20, normalized size = 0.87 \begin {gather*} -{\left (x - 4\right )} e^{\left (4 \, x^{2} + 12 \, e^{5} - 8\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 32, normalized size = 1.39 \begin {gather*} -x e^{\left (4 \, x^{2} + 12 \, e^{5} - 8\right )} + 4 \, e^{\left (4 \, x^{2} + 12 \, e^{5} - 8\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.96
method | result | size |
risch | \(\ln \relax (x )+\left (-x +4\right ) {\mathrm e}^{12 \,{\mathrm e}^{5}+4 x^{2}-8}\) | \(22\) |
norman | \(-x \,{\mathrm e}^{12 \,{\mathrm e}^{5}+4 x^{2}-8}+4 \,{\mathrm e}^{12 \,{\mathrm e}^{5}+4 x^{2}-8}+\ln \relax (x )\) | \(33\) |
default | \(\ln \relax (x )-\frac {{\mathrm e}^{12 \,{\mathrm e}^{5}} {\mathrm e}^{-8} \sqrt {\pi }\, \erfi \left (2 x \right )}{4}+4 \,{\mathrm e}^{12 \,{\mathrm e}^{5}} {\mathrm e}^{4 x^{2}} {\mathrm e}^{-8}-8 \,{\mathrm e}^{12 \,{\mathrm e}^{5}} {\mathrm e}^{-8} \left (\frac {x \,{\mathrm e}^{4 x^{2}}}{8}-\frac {\sqrt {\pi }\, \erfi \left (2 x \right )}{32}\right )\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 32, normalized size = 1.39 \begin {gather*} -x e^{\left (4 \, x^{2} + 12 \, e^{5} - 8\right )} + 4 \, e^{\left (4 \, x^{2} + 12 \, e^{5} - 8\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 34, normalized size = 1.48 \begin {gather*} \ln \relax (x)+4\,{\mathrm {e}}^{12\,{\mathrm {e}}^5}\,{\mathrm {e}}^{-8}\,{\mathrm {e}}^{4\,x^2}-x\,{\mathrm {e}}^{12\,{\mathrm {e}}^5}\,{\mathrm {e}}^{-8}\,{\mathrm {e}}^{4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 19, normalized size = 0.83 \begin {gather*} \left (4 - x\right ) e^{4 x^{2} - 8 + 12 e^{5}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________