Optimal. Leaf size=36 \[ \frac {3 \log \left (\frac {25 \left (4 e^{-x}+\frac {4}{(4+2 x)^2}\right )^2}{x^2}\right )}{5+\frac {5}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 4.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-192-672 x-912 x^2-600 x^3-192 x^4-24 x^5+e^x \left (-12-30 x-18 x^2\right )+\left (96+144 x+72 x^2+12 x^3+e^x (6+3 x)\right ) \log \left (\frac {e^{-2 x} \left (6400+25 e^{2 x}+12800 x+9600 x^2+3200 x^3+400 x^4+e^x \left (800+800 x+200 x^2\right )\right )}{16 x^2+32 x^3+24 x^4+8 x^5+x^6}\right )}{160+560 x+760 x^2+500 x^3+160 x^4+20 x^5+e^x \left (10+25 x+20 x^2+5 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-64-224 x-304 x^2-200 x^3-64 x^4-8 x^5-2 e^x \left (2+5 x+3 x^2\right )+(2+x) \left (e^x+4 (2+x)^2\right ) \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )\right )}{5 (1+x)^2 (2+x) \left (e^x+4 (2+x)^2\right )} \, dx\\ &=\frac {3}{5} \int \frac {-64-224 x-304 x^2-200 x^3-64 x^4-8 x^5-2 e^x \left (2+5 x+3 x^2\right )+(2+x) \left (e^x+4 (2+x)^2\right ) \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2 (2+x) \left (e^x+4 (2+x)^2\right )} \, dx\\ &=\frac {3}{5} \int \left (-\frac {8 x^2 (2+x)}{(1+x) \left (16+e^x+16 x+4 x^2\right )}+\frac {-4-10 x-6 x^2+2 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )+x \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2 (2+x)}\right ) \, dx\\ &=\frac {3}{5} \int \frac {-4-10 x-6 x^2+2 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )+x \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2 (2+x)} \, dx-\frac {24}{5} \int \frac {x^2 (2+x)}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {3}{5} \int \frac {-2 \left (2+5 x+3 x^2\right )+(2+x) \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2 (2+x)} \, dx-\frac {24}{5} \int \left (-\frac {1}{16+e^x+16 x+4 x^2}+\frac {x}{16+e^x+16 x+4 x^2}+\frac {x^2}{16+e^x+16 x+4 x^2}+\frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )}\right ) \, dx\\ &=\frac {3}{5} \int \left (-\frac {2 (2+3 x)}{2+3 x+x^2}+\frac {\log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2}\right ) \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {3}{5} \int \frac {\log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{(1+x)^2} \, dx-\frac {6}{5} \int \frac {2+3 x}{2+3 x+x^2} \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}+\frac {3}{5} \int \frac {2 \left (-4 (1+x) (2+x)^3-e^x (2+3 x)\right )}{x (1+x) (2+x) \left (e^x+4 (2+x)^2\right )} \, dx+\frac {6}{5} \int \frac {1}{1+x} \, dx-\frac {24}{5} \int \frac {1}{2+x} \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {6}{5} \log (1+x)-\frac {24}{5} \log (2+x)-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}+\frac {6}{5} \int \frac {-4 (1+x) (2+x)^3-e^x (2+3 x)}{x (1+x) (2+x) \left (e^x+4 (2+x)^2\right )} \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {6}{5} \log (1+x)-\frac {24}{5} \log (2+x)-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}+\frac {6}{5} \int \left (\frac {-2-3 x}{x \left (2+3 x+x^2\right )}-\frac {4 x (2+x)}{(1+x) \left (16+e^x+16 x+4 x^2\right )}\right ) \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {6}{5} \log (1+x)-\frac {24}{5} \log (2+x)-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}+\frac {6}{5} \int \frac {-2-3 x}{x \left (2+3 x+x^2\right )} \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx-\frac {24}{5} \int \frac {x (2+x)}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx\\ &=\frac {6}{5} \log (1+x)-\frac {24}{5} \log (2+x)-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}+\frac {6}{5} \int \left (\frac {1}{-1-x}-\frac {1}{x}+\frac {2}{2+x}\right ) \, dx+\frac {24}{5} \int \frac {1}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx-\frac {24}{5} \int \frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )} \, dx-\frac {24}{5} \int \left (\frac {1}{16+e^x+16 x+4 x^2}+\frac {x}{16+e^x+16 x+4 x^2}-\frac {1}{(1+x) \left (16+e^x+16 x+4 x^2\right )}\right ) \, dx\\ &=-\frac {6 \log (x)}{5}-\frac {12}{5} \log (2+x)-\frac {3 \log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )}{5 (1+x)}-2 \left (\frac {24}{5} \int \frac {x}{16+e^x+16 x+4 x^2} \, dx\right )-\frac {24}{5} \int \frac {x^2}{16+e^x+16 x+4 x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 93, normalized size = 2.58 \begin {gather*} -\frac {3 \left (2+4 x+2 x^2+2 (1+x) \log (x)+4 (1+x) \log (2+x)-2 \log \left (e^x+4 (2+x)^2\right )-2 x \log \left (e^x+4 (2+x)^2\right )+\log \left (\frac {25 e^{-2 x} \left (e^x+4 (2+x)^2\right )^2}{x^2 (2+x)^4}\right )\right )}{5 (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.52, size = 77, normalized size = 2.14 \begin {gather*} \frac {3 \, x \log \left (\frac {25 \, {\left (16 \, x^{4} + 128 \, x^{3} + 384 \, x^{2} + 8 \, {\left (x^{2} + 4 \, x + 4\right )} e^{x} + 512 \, x + e^{\left (2 \, x\right )} + 256\right )} e^{\left (-2 \, x\right )}}{x^{6} + 8 \, x^{5} + 24 \, x^{4} + 32 \, x^{3} + 16 \, x^{2}}\right )}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.80, size = 163, normalized size = 4.53 \begin {gather*} -\frac {3 \, {\left (2 \, x^{2} - 2 \, x \log \left (-4 \, x^{2} - 16 \, x - e^{x} - 16\right ) + 4 \, x \log \left (x + 2\right ) + 2 \, x \log \relax (x) + 2 \, x - 2 \, \log \left (-4 \, x^{2} - 16 \, x - e^{x} - 16\right ) + 4 \, \log \left (x + 2\right ) + 2 \, \log \relax (x) + \log \left (\frac {25 \, {\left (16 \, x^{4} + 128 \, x^{3} + 8 \, x^{2} e^{x} + 384 \, x^{2} + 32 \, x e^{x} + 512 \, x + e^{\left (2 \, x\right )} + 32 \, e^{x} + 256\right )}}{x^{6} e^{\left (2 \, x\right )} + 8 \, x^{5} e^{\left (2 \, x\right )} + 24 \, x^{4} e^{\left (2 \, x\right )} + 32 \, x^{3} e^{\left (2 \, x\right )} + 16 \, x^{2} e^{\left (2 \, x\right )}}\right )\right )}}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.80, size = 1110, normalized size = 30.83
method | result | size |
risch | \(\frac {6 \ln \left ({\mathrm e}^{x}\right )}{5 \left (x +1\right )}-\frac {3 \left (4 x +i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 \ln \relax (5)+8 \ln \relax (2)+4 x^{2}+4 x \ln \relax (x )+2 i \pi \,\mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )\right ) \mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}\right )^{2}-2 i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2} {\mathrm e}^{-2 x}}{x^{2} \left (2+x \right )^{4}}\right )^{2}-2 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2} {\mathrm e}^{-2 x}}{x^{2} \left (2+x \right )^{4}}\right )^{2}+i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+i \pi \,\mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{2}+i \pi \mathrm {csgn}\left (i \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )^{2}\right ) \mathrm {csgn}\left (i \left (2+x \right )^{3}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{4}\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (2+x \right )^{3}\right ) \mathrm {csgn}\left (i \left (2+x \right )^{4}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+8 x \ln \left (2+x \right )+i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{3}\right ) \mathrm {csgn}\left (i \left (2+x \right )^{4}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )+4 \ln \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )-i \pi \mathrm {csgn}\left (i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}\right )^{3}+i \pi \mathrm {csgn}\left (i \left (2+x \right )^{2}\right )^{3}+i \pi \mathrm {csgn}\left (i \left (2+x \right )^{4}\right )^{3}+i \pi \mathrm {csgn}\left (i \left (2+x \right )^{3}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{3}+i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-4 \ln \left (4 x^{2}+{\mathrm e}^{x}+16 x +16\right )-i \pi \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2} {\mathrm e}^{-2 x}}{x^{2} \left (2+x \right )^{4}}\right )^{3}-i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )^{3}-4 \ln \left (4 x^{2}+{\mathrm e}^{x}+16 x +16\right ) x -i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-2 x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right )-i \pi \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{-2 x} \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2}}{\left (2+x \right )^{4}}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}+4 x +\frac {{\mathrm e}^{x}}{4}+4\right )^{2} {\mathrm e}^{-2 x}}{x^{2} \left (2+x \right )^{4}}\right )+i \pi \,\mathrm {csgn}\left (i \left (2+x \right )\right ) \mathrm {csgn}\left (i \left (2+x \right )^{2}\right ) \mathrm {csgn}\left (i \left (2+x \right )^{3}\right )\right )}{10 \left (x +1\right )}\) | \(1110\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 42, normalized size = 1.17 \begin {gather*} -\frac {6 \, {\left (x^{2} - x \log \left (4 \, x^{2} + 16 \, x + e^{x} + 16\right ) + 2 \, x \log \left (x + 2\right ) + x \log \relax (x) + x + \log \relax (5) + 1\right )}}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {672\,x-\ln \left (\frac {{\mathrm {e}}^{-2\,x}\,\left (12800\,x+25\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x\,\left (200\,x^2+800\,x+800\right )+9600\,x^2+3200\,x^3+400\,x^4+6400\right )}{x^6+8\,x^5+24\,x^4+32\,x^3+16\,x^2}\right )\,\left (144\,x+{\mathrm {e}}^x\,\left (3\,x+6\right )+72\,x^2+12\,x^3+96\right )+{\mathrm {e}}^x\,\left (18\,x^2+30\,x+12\right )+912\,x^2+600\,x^3+192\,x^4+24\,x^5+192}{560\,x+760\,x^2+500\,x^3+160\,x^4+20\,x^5+{\mathrm {e}}^x\,\left (5\,x^3+20\,x^2+25\,x+10\right )+160} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.16, size = 105, normalized size = 2.92 \begin {gather*} - \frac {6 \log {\relax (x )}}{5} + \frac {6 \log {\left (e^{- x} + \frac {1}{4 x^{2} + 16 x + 16} \right )}}{5} - \frac {3 \log {\left (\frac {\left (400 x^{4} + 3200 x^{3} + 9600 x^{2} + 12800 x + \left (200 x^{2} + 800 x + 800\right ) e^{x} + 25 e^{2 x} + 6400\right ) e^{- 2 x}}{x^{6} + 8 x^{5} + 24 x^{4} + 32 x^{3} + 16 x^{2}} \right )}}{5 x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________