Optimal. Leaf size=27 \[ e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 39.58, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 41, number of rules used = 6, integrand size = 237, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.025, Rules used = {6741, 6742, 6688, 2178, 2194, 2555} \begin {gather*} e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(x+1)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2194
Rule 2555
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^x \left (-x-x^2\right )-4 e^{5 x} x \log ^3(1+x)-e^{5 x} \left (4 x+4 x^2\right ) \log ^4(1+x)-\left (e^x \left (-x-x^2\right )+e^{5 x} (1+x) \log ^4(1+x)\right ) \log \left (\frac {1}{3} \left (2 x-2 e^{4 x} \log ^4(1+x)\right )\right )-\left (e^x \left (-x^2-x^3\right )+e^{5 x} \left (x+x^2\right ) \log ^4(1+x)\right ) \log \left (\frac {1}{3} \left (2 x-2 e^{4 x} \log ^4(1+x)\right )\right ) \log \left (x \log \left (\frac {1}{3} \left (2 x-2 e^{4 x} \log ^4(1+x)\right )\right )\right )}{x (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=\int \left (\frac {e^x \left (4 x-\log (1+x)+3 x \log (1+x)+4 x^2 \log (1+x)\right )}{(1+x) \log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x \left (4 x+4 x \log (1+x)+4 x^2 \log (1+x)+\log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right ) \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )+x^2 \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right ) \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx\\ &=\int \frac {e^x \left (4 x-\log (1+x)+3 x \log (1+x)+4 x^2 \log (1+x)\right )}{(1+x) \log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x \left (4 x+4 x \log (1+x)+4 x^2 \log (1+x)+\log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right ) \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )+x^2 \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right ) \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=\int \left (\frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}-\frac {3 e^x x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}-\frac {4 e^x x^2}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}-\frac {4 e^x x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+\int \frac {e^x \left (4 x+(1+x) \log (1+x) \left (4 x+\log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right ) \left (1+x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=-\left (3 \int \frac {e^x x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\right )-4 \int \frac {e^x x^2}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \left (\frac {e^x \left (4 x+4 x \log (1+x)+4 x^2 \log (1+x)+\log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )\right ) \, dx\\ &=-\left (3 \int \left (\frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}-\frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx\right )-4 \int \left (-\frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx-4 \int \left (-\frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}-\frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x \left (4 x+4 x \log (1+x)+4 x^2 \log (1+x)+\log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )+x \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right ) \, dx\\ &=e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )-3 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+3 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-\int e^x \left (\frac {1}{x}+\frac {1-\frac {4 e^{4 x} \log ^3(1+x)}{1+x}-4 e^{4 x} \log ^4(1+x)}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x \left (4 x+(1+x) \log (1+x) \left (4 x+\log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )\right )}{x (1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )-3 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+3 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \left (\frac {e^x}{x}+\frac {4 e^x (1+\log (1+x)+x \log (1+x))}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx-\int \left (\frac {e^x}{x}-\frac {e^x \left (-1-x+4 e^{4 x} \log ^3(1+x)+4 e^{4 x} \log ^4(1+x)+4 e^{4 x} x \log ^4(1+x)\right )}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )-3 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+3 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x (1+\log (1+x)+x \log (1+x))}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x \left (-1-x+4 e^{4 x} \log ^3(1+x)+4 e^{4 x} \log ^4(1+x)+4 e^{4 x} x \log ^4(1+x)\right )}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )-3 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+3 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \left (\frac {e^x}{(1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x x}{(1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+4 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \left (-\frac {4 e^x (1+\log (1+x)+x \log (1+x))}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}+\frac {e^x \left (4 x-\log (1+x)+3 x \log (1+x)+4 x^2 \log (1+x)\right )}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )}\right ) \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right )-3 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+3 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x x}{(1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x (1+\log (1+x)+x \log (1+x))}{(1+x) \log (1+x) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x x}{\left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx-4 \int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+4 \int \frac {e^x}{\log (1+x) \left (-x+e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x}{(1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx+\int \frac {e^x \left (4 x-\log (1+x)+3 x \log (1+x)+4 x^2 \log (1+x)\right )}{(1+x) \log (1+x) \left (x-e^{4 x} \log ^4(1+x)\right ) \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 27, normalized size = 1.00 \begin {gather*} e^x \log \left (x \log \left (\frac {2}{3} \left (x-e^{4 x} \log ^4(1+x)\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 23, normalized size = 0.85 \begin {gather*} e^{x} \log \left (x \log \left (-\frac {2}{3} \, e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + \frac {2}{3} \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x^{2} + x\right )} e^{\left (5 \, x\right )} \log \left (x + 1\right )^{4} + 4 \, x e^{\left (5 \, x\right )} \log \left (x + 1\right )^{3} + {\left ({\left (x^{2} + x\right )} e^{\left (5 \, x\right )} \log \left (x + 1\right )^{4} - {\left (x^{3} + x^{2}\right )} e^{x}\right )} \log \left (-\frac {2}{3} \, e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + \frac {2}{3} \, x\right ) \log \left (x \log \left (-\frac {2}{3} \, e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + \frac {2}{3} \, x\right )\right ) - {\left (x^{2} + x\right )} e^{x} + {\left ({\left (x + 1\right )} e^{\left (5 \, x\right )} \log \left (x + 1\right )^{4} - {\left (x^{2} + x\right )} e^{x}\right )} \log \left (-\frac {2}{3} \, e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + \frac {2}{3} \, x\right )}{{\left ({\left (x^{2} + x\right )} e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} - x^{3} - x^{2}\right )} \log \left (-\frac {2}{3} \, e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + \frac {2}{3} \, x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 198, normalized size = 7.33
method | result | size |
risch | \({\mathrm e}^{x} \ln \left (\ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right )+{\mathrm e}^{x} \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right ) \mathrm {csgn}\left (i x \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right ) {\mathrm e}^{x}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right )^{2} {\mathrm e}^{x}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right ) \mathrm {csgn}\left (i x \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right )^{2} {\mathrm e}^{x}}{2}-\frac {i \pi \mathrm {csgn}\left (i x \ln \left (-\frac {2 \,{\mathrm e}^{4 x} \ln \left (x +1\right )^{4}}{3}+\frac {2 x}{3}\right )\right )^{3} {\mathrm e}^{x}}{2}\) | \(198\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{x} \log \relax (x) + e^{x} \log \left (-\log \relax (3) + \log \relax (2) + \log \left (-e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + x\right )\right ) + \int \frac {4 \, {\left (x + 1\right )} e^{\left (5 \, x\right )} \log \left (x + 1\right )^{4} + 4 \, e^{\left (5 \, x\right )} \log \left (x + 1\right )^{3} - {\left (x + 1\right )} e^{x}}{{\left (i \, \pi + {\left (i \, \pi - \log \relax (3) + \log \relax (2)\right )} x - \log \relax (3) + \log \relax (2)\right )} e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + {\left (-i \, \pi + \log \relax (3) - \log \relax (2)\right )} x^{2} + {\left (-i \, \pi + \log \relax (3) - \log \relax (2)\right )} x + {\left ({\left (x + 1\right )} e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} - x^{2} - x\right )} \log \left (e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} - x\right )}\,{d x} - \int -\frac {4 \, {\left (x + 1\right )} e^{\left (5 \, x\right )} \log \left (x + 1\right )^{4} + 4 \, e^{\left (5 \, x\right )} \log \left (x + 1\right )^{3} - {\left (x + 1\right )} e^{x}}{{\left (x {\left (\log \relax (3) - \log \relax (2)\right )} + \log \relax (3) - \log \relax (2)\right )} e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} - x^{2} {\left (\log \relax (3) - \log \relax (2)\right )} - x {\left (\log \relax (3) - \log \relax (2)\right )} - {\left ({\left (x + 1\right )} e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} - x^{2} - x\right )} \log \left (-e^{\left (4 \, x\right )} \log \left (x + 1\right )^{4} + x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.27, size = 23, normalized size = 0.85 \begin {gather*} \ln \left (x\,\ln \left (\frac {2\,x}{3}-\frac {2\,{\ln \left (x+1\right )}^4\,{\mathrm {e}}^{4\,x}}{3}\right )\right )\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________