Optimal. Leaf size=43 \[ -4+2^{\frac {25 \left (5+x^2 \log (x)\right )}{2-x}} \left (x^2\right )^{\frac {25 \left (5+x^2 \log (x)\right )}{2-x}} \]
________________________________________________________________________________________
Rubi [F] time = 88.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (500-250 x+\left (100 x^2-50 x^3\right ) \log (x)+\left (125 x+50 x^2-25 x^3+\left (100 x^2-25 x^3\right ) \log (x)\right ) \log \left (2 x^2\right )\right )}{4 x-4 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (500-250 x+\left (100 x^2-50 x^3\right ) \log (x)+\left (125 x+50 x^2-25 x^3+\left (100 x^2-25 x^3\right ) \log (x)\right ) \log \left (2 x^2\right )\right )}{x \left (4-4 x+x^2\right )} \, dx\\ &=\int \frac {2^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (500-250 x+\left (100 x^2-50 x^3\right ) \log (x)+\left (125 x+50 x^2-25 x^3+\left (100 x^2-25 x^3\right ) \log (x)\right ) \log \left (2 x^2\right )\right )}{(-2+x)^2 x} \, dx\\ &=\int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (500-250 x+\left (100 x^2-50 x^3\right ) \log (x)+\left (125 x+50 x^2-25 x^3+\left (100 x^2-25 x^3\right ) \log (x)\right ) \log \left (2 x^2\right )\right )}{(2-x)^2 x} \, dx\\ &=\int \left (-\frac {25\ 2^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (5+x^2 \log (x)\right )}{(-2+x) x}-\frac {25\ 2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (-5-2 x+x^2-4 x \log (x)+x^2 \log (x)\right ) \log \left (2 x^2\right )}{(-2+x)^2}\right ) \, dx\\ &=-\left (25 \int \frac {2^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (5+x^2 \log (x)\right )}{(-2+x) x} \, dx\right )-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (-5-2 x+x^2-4 x \log (x)+x^2 \log (x)\right ) \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ &=-\left (25 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (-5-x^2 \log (x)\right )}{(2-x) x} \, dx\right )-25 \int \left (-\frac {5\ 2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2}-\frac {2^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2}+\frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2}-\frac {2^{2-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2}+\frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2}\right ) \, dx\\ &=-\left (25 \int \left (\frac {5\ 2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{(-2+x) x}+\frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)}{-2+x}\right ) \, dx\right )+25 \int \frac {2^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx+25 \int \frac {2^{2-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{1-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2} \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ &=-\left (25 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)}{-2+x} \, dx\right )-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} x \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx-125 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{(-2+x) x} \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ &=-\left (25 \int \left (2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)+\frac {2^{1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)}{-2+x}\right ) \, dx\right )-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \left (\frac {2^{1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2}+\frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{-2+x}\right ) \, dx+25 \int \left (\frac {2^{1+\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2}+\frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{-2+x}\right ) \, dx-125 \int \left (\frac {2^{-1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{-2+x}-\frac {2^{-1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{x}\right ) \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ &=-\left (25 \int 2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \, dx\right )-25 \int \frac {2^{1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)}{-2+x} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx+25 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{-2+x} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{1+\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(-2+x)^2} \, dx+25 \int \frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{-2+x} \, dx-125 \int \frac {2^{-1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{-2+x} \, dx+125 \int \frac {2^{-1+\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{x} \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ &=-\left (25 \int 2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \, dx\right )-25 \int \frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x)}{-2+x} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{-2+x} \, dx-25 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{\frac {-127+x-25 x^2 \log (x)}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-131+3 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{(2-x)^2} \, dx+25 \int \frac {2^{\frac {-129+2 x-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log (x) \log \left (2 x^2\right )}{-2+x} \, dx-125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{-2+x} \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}}}{x} \, dx+125 \int \frac {2^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \left (x^2\right )^{-\frac {25 \left (5+x^2 \log (x)\right )}{-2+x}} \log \left (2 x^2\right )}{(-2+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.49, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (x^2\right )^{\frac {-125-25 x^2 \log (x)}{-2+x}} \left (500-250 x+\left (100 x^2-50 x^3\right ) \log (x)+\left (125 x+50 x^2-25 x^3+\left (100 x^2-25 x^3\right ) \log (x)\right ) \log \left (2 x^2\right )\right )}{4 x-4 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 33, normalized size = 0.77 \begin {gather*} e^{\left (-\frac {25 \, {\left (2 \, x^{2} \log \relax (x)^{2} + {\left (x^{2} \log \relax (2) + 10\right )} \log \relax (x) + 5 \, \log \relax (2)\right )}}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {25 \, {\left ({\left (x^{3} - 2 \, x^{2} + {\left (x^{3} - 4 \, x^{2}\right )} \log \relax (x) - 5 \, x\right )} \log \left (2 \, x^{2}\right ) + 2 \, {\left (x^{3} - 2 \, x^{2}\right )} \log \relax (x) + 10 \, x - 20\right )}}{{\left (x^{3} - 4 \, x^{2} + 4 \, x\right )} \left (2 \, x^{2}\right )^{\frac {25 \, {\left (x^{2} \log \relax (x) + 5\right )}}{x - 2}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.23, size = 75, normalized size = 1.74
method | result | size |
risch | \({\mathrm e}^{-\frac {25 \left (5+x^{2} \ln \relax (x )\right ) \left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 \ln \relax (x )+2 \ln \relax (2)\right )}{2 \left (x -2\right )}}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 68, normalized size = 1.58 \begin {gather*} e^{\left (-25 \, x \log \relax (2) \log \relax (x) - 50 \, x \log \relax (x)^{2} - 50 \, \log \relax (2) \log \relax (x) - 100 \, \log \relax (x)^{2} - \frac {100 \, \log \relax (2) \log \relax (x)}{x - 2} - \frac {200 \, \log \relax (x)^{2}}{x - 2} - \frac {125 \, \log \relax (2)}{x - 2} - \frac {250 \, \log \relax (x)}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.62, size = 38, normalized size = 0.88 \begin {gather*} \frac {{\left (\frac {1}{42535295865117307932921825928971026432\,x^{250}}\right )}^{\frac {1}{x-2}}}{x^{\frac {25\,\left (x^2\,\ln \left (x^2\right )+x^2\,\ln \relax (2)\right )}{x-2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.84, size = 24, normalized size = 0.56 \begin {gather*} e^{\frac {\left (- 25 x^{2} \log {\relax (x )} - 125\right ) \left (2 \log {\relax (x )} + \log {\relax (2 )}\right )}{x - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________