Optimal. Leaf size=31 \[ \log \left ((4-2 x) \left (2 x+\log \left (5 \left (e^4-x+\frac {1}{3} e^{2 x} x\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+9 x-12 x^2+e^4 (-12+12 x)+e^{2 x} \left (-2-7 x+6 x^2\right )+\left (3 e^4-3 x+e^{2 x} x\right ) \log \left (\frac {1}{3} \left (15 e^4-15 x+5 e^{2 x} x\right )\right )}{12 x^2-6 x^3+e^4 \left (-12 x+6 x^2\right )+e^{2 x} \left (-4 x^2+2 x^3\right )+\left (6 x-3 x^2+e^4 (-6+3 x)+e^{2 x} \left (-2 x+x^2\right )\right ) \log \left (\frac {1}{3} \left (15 e^4-15 x+5 e^{2 x} x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6-12 e^4 (-1+x)-9 x+12 x^2-e^{2 x} \left (-2-7 x+6 x^2\right )-\left (3 e^4-3 x+e^{2 x} x\right ) \log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )}{(2-x) \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx\\ &=\int \left (\frac {3 \left (-e^4-2 e^4 x+2 x^2\right )}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}+\frac {-2-7 x+6 x^2+x \log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )}{(-2+x) x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}\right ) \, dx\\ &=3 \int \frac {-e^4-2 e^4 x+2 x^2}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx+\int \frac {-2-7 x+6 x^2+x \log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )}{(-2+x) x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx\\ &=3 \int \left (-\frac {2 e^4}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}-\frac {e^4}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}+\frac {2 x}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}\right ) \, dx+\int \left (\frac {1}{-2+x}+\frac {1+4 x}{x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}\right ) \, dx\\ &=\log (2-x)+6 \int \frac {x}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (3 e^4\right ) \int \frac {1}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (6 e^4\right ) \int \frac {1}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx+\int \frac {1+4 x}{x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx\\ &=\log (2-x)+6 \int \frac {x}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (3 e^4\right ) \int \frac {1}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (6 e^4\right ) \int \frac {1}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx+\int \left (\frac {4}{2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )}+\frac {1}{x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )}\right ) \, dx\\ &=\log (2-x)+4 \int \frac {1}{2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )} \, dx+6 \int \frac {x}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (3 e^4\right ) \int \frac {1}{x \left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx-\left (6 e^4\right ) \int \frac {1}{\left (3 e^4-3 x+e^{2 x} x\right ) \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx+\int \frac {1}{x \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 32, normalized size = 1.03 \begin {gather*} \log (2-x)+\log \left (2 x+\log \left (5 e^4-5 x+\frac {5}{3} e^{2 x} x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 26, normalized size = 0.84 \begin {gather*} \log \left (2 \, x + \log \left (\frac {5}{3} \, x e^{\left (2 \, x\right )} - 5 \, x + 5 \, e^{4}\right )\right ) + \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 26, normalized size = 0.84 \begin {gather*} \log \left (2 \, x + \log \left (\frac {5}{3} \, x e^{\left (2 \, x\right )} - 5 \, x + 5 \, e^{4}\right )\right ) + \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 27, normalized size = 0.87
method | result | size |
norman | \(\ln \left (x -2\right )+\ln \left (2 x +\ln \left (\frac {5 x \,{\mathrm e}^{2 x}}{3}+5 \,{\mathrm e}^{4}-5 x \right )\right )\) | \(27\) |
risch | \(\ln \left (x -2\right )+\ln \left (2 x +\ln \left (\frac {5 x \,{\mathrm e}^{2 x}}{3}+5 \,{\mathrm e}^{4}-5 x \right )\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 31, normalized size = 1.00 \begin {gather*} \log \left (2 \, x + \log \relax (5) - \log \relax (3) + \log \left (x e^{\left (2 \, x\right )} - 3 \, x + 3 \, e^{4}\right )\right ) + \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.72, size = 26, normalized size = 0.84 \begin {gather*} \ln \left (2\,x+\ln \left (5\,{\mathrm {e}}^4-5\,x+\frac {5\,x\,{\mathrm {e}}^{2\,x}}{3}\right )\right )+\ln \left (x-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 29, normalized size = 0.94 \begin {gather*} \log {\left (x - 2 \right )} + \log {\left (2 x + \log {\left (\frac {5 x e^{2 x}}{3} - 5 x + 5 e^{4} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________