Optimal. Leaf size=26 \[ x \left (x-\left (e^{2 x}+\frac {25}{x^2}+7 x\right ) (x-\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 39, normalized size of antiderivative = 1.50, number of steps used = 9, number of rules used = 3, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {14, 2288, 2334} \begin {gather*} -7 x^3+x^2+\left (7 x^2+\frac {25}{x}\right ) \log (x)-e^{2 x} \left (x^2-x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{2 x} \left (-1+2 x+2 x^2-\log (x)-2 x \log (x)\right )+\frac {25+9 x^3-21 x^4-25 \log (x)+14 x^3 \log (x)}{x^2}\right ) \, dx\\ &=-\int e^{2 x} \left (-1+2 x+2 x^2-\log (x)-2 x \log (x)\right ) \, dx+\int \frac {25+9 x^3-21 x^4-25 \log (x)+14 x^3 \log (x)}{x^2} \, dx\\ &=-e^{2 x} \left (x^2-x \log (x)\right )+\int \left (\frac {25+9 x^3-21 x^4}{x^2}+\frac {\left (-25+14 x^3\right ) \log (x)}{x^2}\right ) \, dx\\ &=-e^{2 x} \left (x^2-x \log (x)\right )+\int \frac {25+9 x^3-21 x^4}{x^2} \, dx+\int \frac {\left (-25+14 x^3\right ) \log (x)}{x^2} \, dx\\ &=\left (\frac {25}{x}+7 x^2\right ) \log (x)-e^{2 x} \left (x^2-x \log (x)\right )-\int \left (\frac {25}{x^2}+7 x\right ) \, dx+\int \left (\frac {25}{x^2}+9 x-21 x^2\right ) \, dx\\ &=x^2-7 x^3+\left (\frac {25}{x}+7 x^2\right ) \log (x)-e^{2 x} \left (x^2-x \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 37, normalized size = 1.42 \begin {gather*} -x^2 \left (-1+e^{2 x}+7 x\right )+\left (\frac {25}{x}+e^{2 x} x+7 x^2\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 43, normalized size = 1.65 \begin {gather*} -\frac {7 \, x^{4} + x^{3} e^{\left (2 \, x\right )} - x^{3} - {\left (7 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + 25\right )} \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 46, normalized size = 1.77 \begin {gather*} -\frac {7 \, x^{4} + x^{3} e^{\left (2 \, x\right )} - 7 \, x^{3} \log \relax (x) - x^{2} e^{\left (2 \, x\right )} \log \relax (x) - x^{3} - 25 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 40, normalized size = 1.54
method | result | size |
risch | \(\frac {\left ({\mathrm e}^{2 x} x^{2}+7 x^{3}+25\right ) \ln \relax (x )}{x}-{\mathrm e}^{2 x} x^{2}-7 x^{3}+x^{2}\) | \(40\) |
default | \(x \,{\mathrm e}^{2 x} \ln \relax (x )-{\mathrm e}^{2 x} x^{2}+7 x^{2} \ln \relax (x )+x^{2}+\frac {25 \ln \relax (x )}{x}-7 x^{3}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -7 \, x^{3} + 7 \, x^{2} \log \relax (x) + \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} \log \relax (x) + x^{2} - \frac {1}{2} \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} - \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + \frac {1}{2} \, e^{\left (2 \, x\right )} \log \relax (x) + \frac {25 \, \log \relax (x)}{x} - \frac {1}{2} \, {\rm Ei}\left (2 \, x\right ) + \frac {1}{2} \, e^{\left (2 \, x\right )} - \frac {1}{2} \, \int \frac {{\left (2 \, x - 1\right )} e^{\left (2 \, x\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 37, normalized size = 1.42 \begin {gather*} \frac {25\,\ln \relax (x)}{x}+x^2\,\left (7\,\ln \relax (x)-{\mathrm {e}}^{2\,x}+1\right )-7\,x^3+x\,{\mathrm {e}}^{2\,x}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 32, normalized size = 1.23 \begin {gather*} - 7 x^{3} + x^{2} + \left (- x^{2} + x \log {\relax (x )}\right ) e^{2 x} + \frac {\left (7 x^{3} + 25\right ) \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________