Optimal. Leaf size=24 \[ e^x \left (-\log (x)+e^3 \left (4 x-\log \left (\log \left (x^2\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{3+x}+\left (e^x \left (-1+e^3 \left (4 x+4 x^2\right )\right )-e^x x \log (x)\right ) \log \left (x^2\right )-e^{3+x} x \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )}{x \log \left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 e^{3+x}-\frac {e^x}{x}+4 e^{3+x} x-e^x \log (x)-\frac {2 e^{3+x}}{x \log \left (x^2\right )}-e^{3+x} \log \left (\log \left (x^2\right )\right )\right ) \, dx\\ &=-\left (2 \int \frac {e^{3+x}}{x \log \left (x^2\right )} \, dx\right )+4 \int e^{3+x} \, dx+4 \int e^{3+x} x \, dx-\int \frac {e^x}{x} \, dx-\int e^x \log (x) \, dx-\int e^{3+x} \log \left (\log \left (x^2\right )\right ) \, dx\\ &=4 e^{3+x}+4 e^{3+x} x-\text {Ei}(x)-e^x \log (x)-2 \int \frac {e^{3+x}}{x \log \left (x^2\right )} \, dx-4 \int e^{3+x} \, dx+\int \frac {e^x}{x} \, dx-\int e^{3+x} \log \left (\log \left (x^2\right )\right ) \, dx\\ &=4 e^{3+x} x-e^x \log (x)-2 \int \frac {e^{3+x}}{x \log \left (x^2\right )} \, dx-\int e^{3+x} \log \left (\log \left (x^2\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 24, normalized size = 1.00 \begin {gather*} e^x \left (-\log (x)+e^3 \left (4 x-\log \left (\log \left (x^2\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 30, normalized size = 1.25 \begin {gather*} {\left (4 \, x e^{\left (x + 6\right )} - e^{\left (x + 3\right )} \log \relax (x) - e^{\left (x + 6\right )} \log \left (2 \, \log \relax (x)\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 1.04 \begin {gather*} 4 \, x e^{\left (x + 3\right )} - e^{x} \log \relax (x) - e^{\left (x + 3\right )} \log \left (\log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 55, normalized size = 2.29
method | result | size |
risch | \(4 \,{\mathrm e}^{3+x} x -\ln \left (2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right ) {\mathrm e}^{3+x}-{\mathrm e}^{x} \ln \relax (x )\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 43, normalized size = 1.79 \begin {gather*} 4 \, {\left (x e^{3} - e^{3}\right )} e^{x} - e^{\left (x + 3\right )} \log \relax (2) - e^{x} \log \relax (x) - e^{\left (x + 3\right )} \log \left (\log \relax (x)\right ) + 4 \, e^{\left (x + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 25, normalized size = 1.04 \begin {gather*} 4\,x\,{\mathrm {e}}^3\,{\mathrm {e}}^x-{\mathrm {e}}^x\,\ln \relax (x)-{\mathrm {e}}^3\,{\mathrm {e}}^x\,\ln \left (\ln \left (x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 16.23, size = 22, normalized size = 0.92 \begin {gather*} \left (4 x e^{3} - \log {\relax (x )} - e^{3} \log {\left (2 \log {\relax (x )} \right )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________