Optimal. Leaf size=22 \[ \frac {x}{-e^{e^{20}}-2 x+x^2-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-e^{e^{20}}-x^2-\log (x)}{e^{2 e^{20}}+4 x^2-4 x^3+x^4+e^{e^{20}} \left (4 x-2 x^2\right )+\left (2 e^{e^{20}}+4 x-2 x^2\right ) \log (x)+\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-e^{e^{20}}-x^2-\log (x)}{\left (e^{e^{20}}-(-2+x) x+\log (x)\right )^2} \, dx\\ &=\int \left (-\frac {-1-2 x+2 x^2}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2}-\frac {1}{e^{e^{20}}+2 x-x^2+\log (x)}\right ) \, dx\\ &=-\int \frac {-1-2 x+2 x^2}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2} \, dx-\int \frac {1}{e^{e^{20}}+2 x-x^2+\log (x)} \, dx\\ &=-\int \frac {1}{e^{e^{20}}+2 x-x^2+\log (x)} \, dx-\int \left (-\frac {2 x}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2}+\frac {2 x^2}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2}-\frac {1}{\left (e^{e^{20}}+2 x-x^2+\log (x)\right )^2}\right ) \, dx\\ &=2 \int \frac {x}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2} \, dx-2 \int \frac {x^2}{\left (-e^{e^{20}}-2 x+x^2-\log (x)\right )^2} \, dx+\int \frac {1}{\left (e^{e^{20}}+2 x-x^2+\log (x)\right )^2} \, dx-\int \frac {1}{e^{e^{20}}+2 x-x^2+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 0.95 \begin {gather*} -\frac {x}{e^{e^{20}}+2 x-x^2+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 20, normalized size = 0.91 \begin {gather*} \frac {x}{x^{2} - 2 \, x - e^{\left (e^{20}\right )} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 20, normalized size = 0.91 \begin {gather*} \frac {x}{x^{2} - 2 \, x - e^{\left (e^{20}\right )} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 20, normalized size = 0.91
method | result | size |
norman | \(-\frac {x}{-x^{2}+\ln \relax (x )+{\mathrm e}^{{\mathrm e}^{20}}+2 x}\) | \(20\) |
risch | \(-\frac {x}{-x^{2}+\ln \relax (x )+{\mathrm e}^{{\mathrm e}^{20}}+2 x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 0.91 \begin {gather*} \frac {x}{x^{2} - 2 \, x - e^{\left (e^{20}\right )} - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.12, size = 19, normalized size = 0.86 \begin {gather*} -\frac {x}{2\,x+{\mathrm {e}}^{{\mathrm {e}}^{20}}+\ln \relax (x)-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.77 \begin {gather*} - \frac {x}{- x^{2} + 2 x + \log {\relax (x )} + e^{e^{20}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________