Optimal. Leaf size=21 \[ \frac {1}{2} e^{\left (1+e^{x^2}\right ) x^3}-x \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 23, normalized size of antiderivative = 1.10, number of steps used = 3, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {12, 6706} \begin {gather*} \frac {1}{2} e^{x^3+e^{x^2} x^3}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (-2+e^{x^3+e^{x^2} x^3} \left (3 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right )\right ) \, dx\\ &=-x+\frac {1}{2} \int e^{x^3+e^{x^2} x^3} \left (3 x^2+e^{x^2} \left (3 x^2+2 x^4\right )\right ) \, dx\\ &=\frac {1}{2} e^{x^3+e^{x^2} x^3}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 23, normalized size = 1.10 \begin {gather*} \frac {1}{2} e^{x^3+e^{x^2} x^3}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 19, normalized size = 0.90 \begin {gather*} -x + \frac {1}{2} \, e^{\left (x^{3} e^{\left (x^{2}\right )} + x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 19, normalized size = 0.90 \begin {gather*} -x + \frac {1}{2} \, e^{\left (x^{3} e^{\left (x^{2}\right )} + x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.86
method | result | size |
risch | \(\frac {{\mathrm e}^{x^{3} \left ({\mathrm e}^{x^{2}}+1\right )}}{2}-x\) | \(18\) |
default | \(-x +\frac {{\mathrm e}^{x^{3} {\mathrm e}^{x^{2}}+x^{3}}}{2}\) | \(20\) |
norman | \(-x +\frac {{\mathrm e}^{x^{3} {\mathrm e}^{x^{2}}+x^{3}}}{2}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 19, normalized size = 0.90 \begin {gather*} -x + \frac {1}{2} \, e^{\left (x^{3} e^{\left (x^{2}\right )} + x^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 19, normalized size = 0.90 \begin {gather*} \frac {{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{x^3\,{\mathrm {e}}^{x^2}}}{2}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.71 \begin {gather*} - x + \frac {e^{x^{3} e^{x^{2}} + x^{3}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________