Optimal. Leaf size=24 \[ -16+x+\frac {\left (\frac {e^x}{x}-x\right ) \log (\log (5))}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 15, normalized size of antiderivative = 0.62, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {12, 14, 2197} \begin {gather*} \frac {e^x \log (\log (5))}{5 x^2}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {5 x^3+e^x (-2+x) \log (\log (5))}{x^3} \, dx\\ &=\frac {1}{5} \int \left (5+\frac {e^x (-2+x) \log (\log (5))}{x^3}\right ) \, dx\\ &=x+\frac {1}{5} \log (\log (5)) \int \frac {e^x (-2+x)}{x^3} \, dx\\ &=x+\frac {e^x \log (\log (5))}{5 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.62 \begin {gather*} x+\frac {e^x \log (\log (5))}{5 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 \, x^{3} + e^{x} \log \left (\log \relax (5)\right )}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 17, normalized size = 0.71 \begin {gather*} \frac {5 \, x^{3} + e^{x} \log \left (\log \relax (5)\right )}{5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 13, normalized size = 0.54
method | result | size |
default | \(x +\frac {{\mathrm e}^{x} \ln \left (\ln \relax (5)\right )}{5 x^{2}}\) | \(13\) |
risch | \(x +\frac {{\mathrm e}^{x} \ln \left (\ln \relax (5)\right )}{5 x^{2}}\) | \(13\) |
norman | \(\frac {x^{3}+\frac {{\mathrm e}^{x} \ln \left (\ln \relax (5)\right )}{5}}{x^{2}}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 22, normalized size = 0.92 \begin {gather*} \frac {1}{5} \, \Gamma \left (-1, -x\right ) \log \left (\log \relax (5)\right ) + \frac {2}{5} \, \Gamma \left (-2, -x\right ) \log \left (\log \relax (5)\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 12, normalized size = 0.50 \begin {gather*} x+\frac {{\mathrm {e}}^x\,\ln \left (\ln \relax (5)\right )}{5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.58 \begin {gather*} x + \frac {e^{x} \log {\left (\log {\relax (5 )} \right )}}{5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________