Optimal. Leaf size=19 \[ \frac {1-x-5 \log (2 x)}{\frac {1}{8}+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 28, normalized size of antiderivative = 1.47, number of steps used = 10, number of rules used = 8, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {1594, 27, 6741, 12, 6742, 77, 2314, 31} \begin {gather*} \frac {9}{8 x+1}-40 \log (x)+\frac {320 x \log (2 x)}{8 x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 77
Rule 1594
Rule 2314
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-40-392 x+320 x \log (2 x)}{x \left (1+16 x+64 x^2\right )} \, dx\\ &=\int \frac {-40-392 x+320 x \log (2 x)}{x (1+8 x)^2} \, dx\\ &=\int \frac {8 (-5-49 x+40 x \log (2 x))}{x (1+8 x)^2} \, dx\\ &=8 \int \frac {-5-49 x+40 x \log (2 x)}{x (1+8 x)^2} \, dx\\ &=8 \int \left (\frac {-5-49 x}{x (1+8 x)^2}+\frac {40 \log (2 x)}{(1+8 x)^2}\right ) \, dx\\ &=8 \int \frac {-5-49 x}{x (1+8 x)^2} \, dx+320 \int \frac {\log (2 x)}{(1+8 x)^2} \, dx\\ &=\frac {320 x \log (2 x)}{1+8 x}+8 \int \left (-\frac {5}{x}-\frac {9}{(1+8 x)^2}+\frac {40}{1+8 x}\right ) \, dx-320 \int \frac {1}{1+8 x} \, dx\\ &=\frac {9}{1+8 x}-40 \log (x)+\frac {320 x \log (2 x)}{1+8 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.89 \begin {gather*} \frac {8 (9-40 \log (2 x))}{8+64 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.89 \begin {gather*} -\frac {40 \, \log \left (2 \, x\right ) - 9}{8 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 23, normalized size = 1.21 \begin {gather*} -\frac {40 \, \log \left (2 \, x\right )}{8 \, x + 1} + \frac {9}{8 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 1.00
method | result | size |
norman | \(\frac {-72 x -40 \ln \left (2 x \right )}{8 x +1}\) | \(19\) |
risch | \(-\frac {40 \ln \left (2 x \right )}{8 x +1}+\frac {9}{8 x +1}\) | \(24\) |
derivativedivides | \(\frac {320 \ln \left (2 x \right ) x}{8 x +1}-40 \ln \left (2 x \right )+\frac {9}{8 x +1}\) | \(31\) |
default | \(\frac {320 \ln \left (2 x \right ) x}{8 x +1}-40 \ln \left (2 x \right )+\frac {9}{8 x +1}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 23, normalized size = 1.21 \begin {gather*} -\frac {40 \, \log \left (2 \, x\right )}{8 \, x + 1} + \frac {9}{8 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 17, normalized size = 0.89 \begin {gather*} -\frac {40\,\ln \left (2\,x\right )-9}{8\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.89 \begin {gather*} \frac {72}{64 x + 8} - \frac {40 \log {\left (2 x \right )}}{8 x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________