Optimal. Leaf size=25 \[ -4 e^{7-x (2 x+\log (9))}+\frac {2}{7+2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 5, number of rules used = 4, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {27, 6688, 2287, 2236} \begin {gather*} \frac {2}{2 x+7}-4\ 9^{-x} e^{7-2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2236
Rule 2287
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+e^{7-2 x^2-x \log (9)} \left (784 x+448 x^2+64 x^3+\left (196+112 x+16 x^2\right ) \log (9)\right )}{(7+2 x)^2} \, dx\\ &=\int \left (-\frac {4}{(7+2 x)^2}+4\ 9^{-x} e^{7-2 x^2} (4 x+\log (9))\right ) \, dx\\ &=\frac {2}{7+2 x}+4 \int 9^{-x} e^{7-2 x^2} (4 x+\log (9)) \, dx\\ &=\frac {2}{7+2 x}+4 \int e^{7-2 x^2-x \log (9)} (4 x+\log (9)) \, dx\\ &=-4 9^{-x} e^{7-2 x^2}+\frac {2}{7+2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 1.04 \begin {gather*} -4 9^{-x} e^{7-2 x^2}+\frac {2}{7+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 31, normalized size = 1.24 \begin {gather*} -\frac {2 \, {\left (2 \, {\left (2 \, x + 7\right )} e^{\left (-2 \, x^{2} - 2 \, x \log \relax (3) + 7\right )} - 1\right )}}{2 \, x + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 42, normalized size = 1.68 \begin {gather*} -\frac {2 \, {\left (4 \, x e^{\left (-2 \, x^{2} - 2 \, x \log \relax (3) + 7\right )} + 14 \, e^{\left (-2 \, x^{2} - 2 \, x \log \relax (3) + 7\right )} - 1\right )}}{2 \, x + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.33, size = 20, normalized size = 0.80
method | result | size |
risch | \(\frac {1}{x +\frac {7}{2}}-4 \left (\frac {1}{9}\right )^{x} {\mathrm e}^{-2 x^{2}+7}\) | \(20\) |
default | \(-4 \,{\mathrm e}^{-2 x \ln \relax (3)-2 x^{2}+7}+\frac {2}{7+2 x}\) | \(26\) |
norman | \(\frac {-8 \,{\mathrm e}^{-2 x \ln \relax (3)-2 x^{2}+7} x -28 \,{\mathrm e}^{-2 x \ln \relax (3)-2 x^{2}+7}+2}{7+2 x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 25, normalized size = 1.00 \begin {gather*} \frac {2}{2 \, x + 7} - 4 \, e^{\left (-2 \, x^{2} - 2 \, x \log \relax (3) + 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 60, normalized size = 2.40 \begin {gather*} -\frac {4\,x}{7\,\left (2\,x+7\right )}-\frac {28\,{\mathrm {e}}^7\,{\mathrm {e}}^{-2\,x^2}}{3^{2\,x}\,\left (2\,x+7\right )}-\frac {8\,x\,{\mathrm {e}}^7\,{\mathrm {e}}^{-2\,x^2}}{3^{2\,x}\,\left (2\,x+7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 22, normalized size = 0.88 \begin {gather*} - 4 e^{- 2 x^{2} - 2 x \log {\relax (3 )} + 7} + \frac {4}{4 x + 14} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________