Optimal. Leaf size=26 \[ \frac {-2 x+\frac {x}{(5+2 x-\log (8)) \log (\log (x))}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5-2 x+\log (8)-2 x \log (x) \log (\log (x))}{\left (25 x+20 x^2+4 x^3+\left (-10 x-4 x^2\right ) \log (8)+x \log ^2(8)\right ) \log (x) \log ^2(\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5-2 x+\log (8)-2 x \log (x) \log (\log (x))}{\left (20 x^2+4 x^3+\left (-10 x-4 x^2\right ) \log (8)+x \left (25+\log ^2(8)\right )\right ) \log (x) \log ^2(\log (x))} \, dx\\ &=\int \frac {-2 x-5 \left (1-\frac {3 \log (2)}{5}\right )-2 x \log (x) \log (\log (x))}{x \left (4 x^2-4 x (-5+\log (8))+(-5+\log (8))^2\right ) \log (x) \log ^2(\log (x))} \, dx\\ &=\int \frac {-2 x-5 \left (1-\frac {3 \log (2)}{5}\right )-2 x \log (x) \log (\log (x))}{x (5+2 x-\log (8))^2 \log (x) \log ^2(\log (x))} \, dx\\ &=\int \left (-\frac {1}{x (5+2 x-\log (8)) \log (x) \log ^2(\log (x))}-\frac {2}{(5+2 x-\log (8))^2 \log (\log (x))}\right ) \, dx\\ &=-\left (2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx\right )-\int \frac {1}{x (5+2 x-\log (8)) \log (x) \log ^2(\log (x))} \, dx\\ &=-\left (2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx\right )-\int \left (-\frac {1}{x (-5+\log (8)) \log (x) \log ^2(\log (x))}+\frac {2}{(5+2 x-\log (8)) (-5+\log (8)) \log (x) \log ^2(\log (x))}\right ) \, dx\\ &=-\left (2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx\right )+\frac {2 \int \frac {1}{(5+2 x-\log (8)) \log (x) \log ^2(\log (x))} \, dx}{5-\log (8)}+\frac {\int \frac {1}{x \log (x) \log ^2(\log (x))} \, dx}{-5+\log (8)}\\ &=-\left (2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx\right )+\frac {2 \int \frac {1}{(5+2 x-\log (8)) \log (x) \log ^2(\log (x))} \, dx}{5-\log (8)}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,\log (x)\right )}{-5+\log (8)}\\ &=-\left (2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx\right )+\frac {2 \int \frac {1}{(5+2 x-\log (8)) \log (x) \log ^2(\log (x))} \, dx}{5-\log (8)}+\frac {\operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (\log (x))\right )}{-5+\log (8)}\\ &=\frac {1}{(5-\log (8)) \log (\log (x))}-2 \int \frac {1}{(5+2 x-\log (8))^2 \log (\log (x))} \, dx+\frac {2 \int \frac {1}{(5+2 x-\log (8)) \log (x) \log ^2(\log (x))} \, dx}{5-\log (8)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 17, normalized size = 0.65 \begin {gather*} \frac {1}{(5+2 x-\log (8)) \log (\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 17, normalized size = 0.65 \begin {gather*} \frac {1}{{\left (2 \, x - 3 \, \log \relax (2) + 5\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 21, normalized size = 0.81 \begin {gather*} \frac {1}{2 \, x \log \left (\log \relax (x)\right ) - 3 \, \log \relax (2) \log \left (\log \relax (x)\right ) + 5 \, \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.73
method | result | size |
risch | \(-\frac {1}{\left (-5+3 \ln \relax (2)-2 x \right ) \ln \left (\ln \relax (x )\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.95, size = 17, normalized size = 0.65 \begin {gather*} \frac {1}{{\left (2 \, x - 3 \, \log \relax (2) + 5\right )} \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {2\,x-3\,\ln \relax (2)+2\,x\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)+5}{{\ln \left (\ln \relax (x)\right )}^2\,\ln \relax (x)\,\left (25\,x-3\,\ln \relax (2)\,\left (4\,x^2+10\,x\right )+9\,x\,{\ln \relax (2)}^2+20\,x^2+4\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 15, normalized size = 0.58 \begin {gather*} \frac {1}{\left (2 x - 3 \log {\relax (2 )} + 5\right ) \log {\left (\log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________