Optimal. Leaf size=27 \[ \frac {1}{5} e^x \left (9+\frac {4 x (1-\log (2))}{5+x}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [C] time = 2.51, antiderivative size = 137, normalized size of antiderivative = 5.07, number of steps used = 28, number of rules used = 11, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {1594, 27, 12, 6741, 6688, 6742, 2178, 2177, 2199, 2194, 2554} \begin {gather*} \frac {6 \text {Ei}(x+5)}{5 e^5}+\frac {(47-\log (16)) \text {Ei}(x+5)}{e^5}+\frac {3 (13-\log (16)) \text {Ei}(x+5)}{e^5}-\frac {4 (109-20 \log (2)) \text {Ei}(x+5)}{5 e^5}-\frac {e^x}{x+5}-\frac {1}{5} e^x \log (x)-\frac {e^x (47-\log (16))}{x+5}+\frac {1}{5} e^x (13-\log (16))-\frac {5 e^x (13-\log (16))}{x+5}+\frac {e^x (109-20 \log (2))}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-25+235 x+109 x^2+13 x^3+\left (-20 x-20 x^2-4 x^3\right ) \log (2)\right )+e^x \left (-25 x-10 x^2-x^3\right ) \log (x)}{x \left (125+50 x+5 x^2\right )} \, dx\\ &=\int \frac {e^x \left (-25+235 x+109 x^2+13 x^3+\left (-20 x-20 x^2-4 x^3\right ) \log (2)\right )+e^x \left (-25 x-10 x^2-x^3\right ) \log (x)}{5 x (5+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (-25+235 x+109 x^2+13 x^3+\left (-20 x-20 x^2-4 x^3\right ) \log (2)\right )+e^x \left (-25 x-10 x^2-x^3\right ) \log (x)}{x (5+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (-25+13 x^3 \left (1-\frac {4 \log (2)}{13}\right )+109 x^2 \left (1-\frac {20 \log (2)}{109}\right )+235 x \left (1-\frac {4 \log (2)}{47}\right )-25 x \log (x)-10 x^2 \log (x)-x^3 \log (x)\right )}{x (5+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (-25-x^2 (-109+20 \log (2))-5 x (-47+\log (16))-x^3 (-13+\log (16))-x (5+x)^2 \log (x)\right )}{x (5+x)^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {25 e^x}{x (5+x)^2}-\frac {e^x x (-109+20 \log (2))}{(5+x)^2}-\frac {5 e^x (-47+\log (16))}{(5+x)^2}-\frac {e^x x^2 (-13+\log (16))}{(5+x)^2}-e^x \log (x)\right ) \, dx\\ &=-\left (\frac {1}{5} \int e^x \log (x) \, dx\right )-5 \int \frac {e^x}{x (5+x)^2} \, dx+\frac {1}{5} (109-20 \log (2)) \int \frac {e^x x}{(5+x)^2} \, dx+\frac {1}{5} (13-\log (16)) \int \frac {e^x x^2}{(5+x)^2} \, dx+(47-\log (16)) \int \frac {e^x}{(5+x)^2} \, dx\\ &=-\frac {e^x (47-\log (16))}{5+x}-\frac {1}{5} e^x \log (x)+\frac {1}{5} \int \frac {e^x}{x} \, dx-5 \int \left (\frac {e^x}{25 x}-\frac {e^x}{5 (5+x)^2}-\frac {e^x}{25 (5+x)}\right ) \, dx+\frac {1}{5} (109-20 \log (2)) \int \left (-\frac {5 e^x}{(5+x)^2}+\frac {e^x}{5+x}\right ) \, dx+\frac {1}{5} (13-\log (16)) \int \left (e^x+\frac {25 e^x}{(5+x)^2}-\frac {10 e^x}{5+x}\right ) \, dx+(47-\log (16)) \int \frac {e^x}{5+x} \, dx\\ &=\frac {\text {Ei}(x)}{5}-\frac {e^x (47-\log (16))}{5+x}+\frac {\text {Ei}(5+x) (47-\log (16))}{e^5}-\frac {1}{5} e^x \log (x)-\frac {1}{5} \int \frac {e^x}{x} \, dx+\frac {1}{5} \int \frac {e^x}{5+x} \, dx+\frac {1}{5} (109-20 \log (2)) \int \frac {e^x}{5+x} \, dx+(-109+20 \log (2)) \int \frac {e^x}{(5+x)^2} \, dx+\frac {1}{5} (13-\log (16)) \int e^x \, dx+(5 (13-\log (16))) \int \frac {e^x}{(5+x)^2} \, dx+(2 (-13+\log (16))) \int \frac {e^x}{5+x} \, dx+\int \frac {e^x}{(5+x)^2} \, dx\\ &=-\frac {e^x}{5+x}+\frac {\text {Ei}(5+x)}{5 e^5}+\frac {e^x (109-20 \log (2))}{5+x}+\frac {\text {Ei}(5+x) (109-20 \log (2))}{5 e^5}+\frac {1}{5} e^x (13-\log (16))-\frac {5 e^x (13-\log (16))}{5+x}-\frac {2 \text {Ei}(5+x) (13-\log (16))}{e^5}-\frac {e^x (47-\log (16))}{5+x}+\frac {\text {Ei}(5+x) (47-\log (16))}{e^5}-\frac {1}{5} e^x \log (x)+(-109+20 \log (2)) \int \frac {e^x}{5+x} \, dx+(5 (13-\log (16))) \int \frac {e^x}{5+x} \, dx+\int \frac {e^x}{5+x} \, dx\\ &=-\frac {e^x}{5+x}+\frac {6 \text {Ei}(5+x)}{5 e^5}+\frac {e^x (109-20 \log (2))}{5+x}-\frac {4 \text {Ei}(5+x) (109-20 \log (2))}{5 e^5}+\frac {1}{5} e^x (13-\log (16))-\frac {5 e^x (13-\log (16))}{5+x}+\frac {3 \text {Ei}(5+x) (13-\log (16))}{e^5}-\frac {e^x (47-\log (16))}{5+x}+\frac {\text {Ei}(5+x) (47-\log (16))}{e^5}-\frac {1}{5} e^x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 26, normalized size = 0.96 \begin {gather*} -\frac {e^x (-45+x (-13+\log (16))+(5+x) \log (x))}{5 (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 29, normalized size = 1.07 \begin {gather*} -\frac {{\left (x + 5\right )} e^{x} \log \relax (x) + {\left (4 \, x \log \relax (2) - 13 \, x - 45\right )} e^{x}}{5 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 36, normalized size = 1.33 \begin {gather*} -\frac {4 \, x e^{x} \log \relax (2) + x e^{x} \log \relax (x) - 13 \, x e^{x} + 5 \, e^{x} \log \relax (x) - 45 \, e^{x}}{5 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 27, normalized size = 1.00
method | result | size |
risch | \(-\frac {{\mathrm e}^{x} \ln \relax (x )}{5}-\frac {\left (4 x \ln \relax (2)-13 x -45\right ) {\mathrm e}^{x}}{5 \left (5+x \right )}\) | \(27\) |
norman | \(\frac {\left (-\frac {4 \ln \relax (2)}{5}+\frac {13}{5}\right ) x \,{\mathrm e}^{x}-{\mathrm e}^{x} \ln \relax (x )-\frac {x \,{\mathrm e}^{x} \ln \relax (x )}{5}+9 \,{\mathrm e}^{x}}{5+x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 25, normalized size = 0.93 \begin {gather*} -\frac {{\left (x {\left (4 \, \log \relax (2) - 13\right )} + {\left (x + 5\right )} \log \relax (x) - 45\right )} e^{x}}{5 \, {\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 29, normalized size = 1.07 \begin {gather*} \frac {45\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x\,\left (\ln \left (16\right )-13\right )}{5\,x+25}-\frac {{\mathrm {e}}^x\,\ln \relax (x)}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 29, normalized size = 1.07 \begin {gather*} \frac {\left (- x \log {\relax (x )} - 4 x \log {\relax (2 )} + 13 x - 5 \log {\relax (x )} + 45\right ) e^{x}}{5 x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________