Optimal. Leaf size=31 \[ e^{4^{-e^x-x} \left (1+\frac {1-x}{4}\right )^{e^x+x}} \]
________________________________________________________________________________________
Rubi [F] time = 15.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{e^x+x} \left (e^x+x+\left (-5+e^x (-5+x)+x\right ) \log \left (\frac {5-x}{16}\right )\right )}{-5+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x} \left (1-5 \log \left (\frac {5-x}{16}\right )+x \log \left (\frac {5-x}{16}\right )\right )-16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} \left (x-5 \log \left (\frac {5-x}{16}\right )+x \log \left (\frac {5-x}{16}\right )\right )\right ) \, dx\\ &=-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x} \left (1-5 \log \left (\frac {5-x}{16}\right )+x \log \left (\frac {5-x}{16}\right )\right ) \, dx-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} \left (x-5 \log \left (\frac {5-x}{16}\right )+x \log \left (\frac {5-x}{16}\right )\right ) \, dx\\ &=-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x} \left (1+(-5+x) \log \left (\frac {5-x}{16}\right )\right ) \, dx-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} \left (x+(-5+x) \log \left (\frac {5-x}{16}\right )\right ) \, dx\\ &=-\int \left (16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} x-16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{e^x+x} \log \left (\frac {5}{16}-\frac {x}{16}\right )\right ) \, dx-\int \left (16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x}-16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{e^x+x} \log \left (\frac {5}{16}-\frac {x}{16}\right )\right ) \, dx\\ &=-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x} \, dx-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} x \, dx+\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{e^x+x} \log \left (\frac {5}{16}-\frac {x}{16}\right ) \, dx+\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{e^x+x} \log \left (\frac {5}{16}-\frac {x}{16}\right ) \, dx\\ &=\log \left (\frac {5}{16}-\frac {x}{16}\right ) \int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{e^x+x} \, dx+\log \left (\frac {5}{16}-\frac {x}{16}\right ) \int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{e^x+x} \, dx-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{-1+e^x+x} \, dx-\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{-1+e^x+x} x \, dx-\int \frac {\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}} (5-x)^{e^x+x} \, dx}{-5+x} \, dx-\int \frac {\int 16^{-e^x-x} e^{16^{-e^x-x} (5-x)^{e^x+x}+x} (5-x)^{e^x+x} \, dx}{-5+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 9.52, size = 25, normalized size = 0.81 \begin {gather*} e^{16^{-e^x-x} (5-x)^{e^x+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 11, normalized size = 0.35 \begin {gather*} e^{\left ({\left (-\frac {1}{16} \, x + \frac {5}{16}\right )}^{x + e^{x}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 12, normalized size = 0.39
method | result | size |
risch | \({\mathrm e}^{\left (\frac {5}{16}-\frac {x}{16}\right )^{{\mathrm e}^{x}+x}}\) | \(12\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 31, normalized size = 1.00 \begin {gather*} e^{\left (e^{\left (-4 \, x \log \relax (2) - 4 \, e^{x} \log \relax (2) + x \log \left (-x + 5\right ) + e^{x} \log \left (-x + 5\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.78, size = 11, normalized size = 0.35 \begin {gather*} {\mathrm {e}}^{{\left (\frac {5}{16}-\frac {x}{16}\right )}^{x+{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 11.12, size = 15, normalized size = 0.48 \begin {gather*} e^{e^{\left (x + e^{x}\right ) \log {\left (\frac {5}{16} - \frac {x}{16} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________