Optimal. Leaf size=22 \[ \frac {20}{3} x \left (3-e^{3-e-x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 28, normalized size of antiderivative = 1.27, number of steps used = 7, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {12, 2226, 2205, 2212} \begin {gather*} \frac {20 x^2}{3}-\frac {20}{3} e^{-x^2-e+3} x+20 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2205
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (60+40 x+e^{3-e-x^2} \left (-20+40 x^2\right )\right ) \, dx\\ &=20 x+\frac {20 x^2}{3}+\frac {1}{3} \int e^{3-e-x^2} \left (-20+40 x^2\right ) \, dx\\ &=20 x+\frac {20 x^2}{3}+\frac {1}{3} \int \left (-20 e^{3-e-x^2}+40 e^{3-e-x^2} x^2\right ) \, dx\\ &=20 x+\frac {20 x^2}{3}-\frac {20}{3} \int e^{3-e-x^2} \, dx+\frac {40}{3} \int e^{3-e-x^2} x^2 \, dx\\ &=20 x-\frac {20}{3} e^{3-e-x^2} x+\frac {20 x^2}{3}-\frac {10}{3} e^{3-e} \sqrt {\pi } \text {erf}(x)+\frac {20}{3} \int e^{3-e-x^2} \, dx\\ &=20 x-\frac {20}{3} e^{3-e-x^2} x+\frac {20 x^2}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 26, normalized size = 1.18 \begin {gather*} \frac {20}{3} \left (3 x-e^{3-e-x^2} x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 24, normalized size = 1.09 \begin {gather*} \frac {20}{3} \, x^{2} - \frac {20}{3} \, x e^{\left (-x^{2} - e + 3\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 24, normalized size = 1.09 \begin {gather*} \frac {20}{3} \, x^{2} - \frac {20}{3} \, x e^{\left (-x^{2} - e + 3\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.14
method | result | size |
risch | \(20 x +\frac {20 x^{2}}{3}-\frac {20 x \,{\mathrm e}^{-{\mathrm e}-x^{2}+3}}{3}\) | \(25\) |
norman | \(20 x +\frac {20 x^{2}}{3}-\frac {20 x \,{\mathrm e}^{-{\mathrm e}-x^{2}+3}}{3}\) | \(27\) |
default | \(20 x +\frac {20 x^{2}}{3}-\frac {10 \,{\mathrm e}^{-{\mathrm e}} {\mathrm e}^{3} \sqrt {\pi }\, \erf \relax (x )}{3}+\frac {40 \,{\mathrm e}^{-{\mathrm e}} {\mathrm e}^{3} \left (-\frac {x \,{\mathrm e}^{-x^{2}}}{2}+\frac {\sqrt {\pi }\, \erf \relax (x )}{4}\right )}{3}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 24, normalized size = 1.09 \begin {gather*} \frac {20}{3} \, x^{2} - \frac {20}{3} \, x e^{\left (-x^{2} - e + 3\right )} + 20 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 25, normalized size = 1.14 \begin {gather*} 20\,x+\frac {20\,x^2}{3}-\frac {20\,x\,{\mathrm {e}}^{-\mathrm {e}}\,{\mathrm {e}}^3\,{\mathrm {e}}^{-x^2}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 24, normalized size = 1.09 \begin {gather*} \frac {20 x^{2}}{3} - \frac {20 x e^{- x^{2} - e + 3}}{3} + 20 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________