Optimal. Leaf size=21 \[ \frac {e^4 \left (4+e^{4+e^3}-\frac {x}{2}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.76, number of steps used = 4, number of rules used = 4, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6, 12, 1586, 30} \begin {gather*} \frac {e^4 \left (4+e^{4+e^3}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 30
Rule 1586
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (-8-2 e^{4+e^3}\right ) \left (8+2 e^{4+e^3}-x\right )}{2 \left (\left (8+2 e^{4+e^3}\right ) x^2-x^3\right )} \, dx\\ &=-\left (\left (e^4 \left (4+e^{4+e^3}\right )\right ) \int \frac {8+2 e^{4+e^3}-x}{\left (8+2 e^{4+e^3}\right ) x^2-x^3} \, dx\right )\\ &=-\left (\left (e^4 \left (4+e^{4+e^3}\right )\right ) \int \frac {1}{x^2} \, dx\right )\\ &=\frac {e^4 \left (4+e^{4+e^3}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 16, normalized size = 0.76 \begin {gather*} \frac {e^4 \left (4+e^{4+e^3}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 14, normalized size = 0.67 \begin {gather*} \frac {4 \, e^{4} + e^{\left (e^{3} + 8\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 13, normalized size = 0.62 \begin {gather*} \frac {{\left (e^{\left (e^{3} + 4\right )} + 4\right )} e^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 17, normalized size = 0.81
method | result | size |
default | \(-\frac {\left (-2 \,{\mathrm e}^{4+{\mathrm e}^{3}}-8\right ) {\mathrm e}^{4}}{2 x}\) | \(17\) |
norman | \(\frac {{\mathrm e}^{8} {\mathrm e}^{{\mathrm e}^{3}}+4 \,{\mathrm e}^{4}}{x}\) | \(18\) |
risch | \(\frac {{\mathrm e}^{4} {\mathrm e}^{4+{\mathrm e}^{3}}}{x}+\frac {4 \,{\mathrm e}^{4}}{x}\) | \(20\) |
gosper | \(\frac {2 \left ({\mathrm e}^{4+{\mathrm e}^{3}}+4\right ) {\mathrm e}^{\ln \left ({\mathrm e}^{4+{\mathrm e}^{3}}+4-\frac {x}{2}\right )+4}}{x \left (2 \,{\mathrm e}^{4+{\mathrm e}^{3}}+8-x \right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 13, normalized size = 0.62 \begin {gather*} \frac {{\left (e^{\left (e^{3} + 4\right )} + 4\right )} e^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 14, normalized size = 0.67 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^3+8}+4\,{\mathrm {e}}^4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 17, normalized size = 0.81 \begin {gather*} - \frac {- e^{8} e^{e^{3}} - 4 e^{4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________