Optimal. Leaf size=21 \[ \frac {2}{5} e^{2+e^{-e^4}+x} \left (5+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 34, normalized size of antiderivative = 1.62, number of steps used = 9, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 2196, 2194, 2176} \begin {gather*} \frac {2}{5} e^{x+e^{-e^4}+2} x^2+2 e^{x+e^{-e^4}+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{e^{-e^4} \left (1+2 e^{e^4}\right )+x} \left (10+4 x+2 x^2\right ) \, dx\\ &=\frac {1}{5} \int \left (10 e^{2+e^{-e^4}+x}+4 e^{2+e^{-e^4}+x} x+2 e^{2+e^{-e^4}+x} x^2\right ) \, dx\\ &=\frac {2}{5} \int e^{2+e^{-e^4}+x} x^2 \, dx+\frac {4}{5} \int e^{2+e^{-e^4}+x} x \, dx+2 \int e^{2+e^{-e^4}+x} \, dx\\ &=2 e^{2+e^{-e^4}+x}+\frac {4}{5} e^{2+e^{-e^4}+x} x+\frac {2}{5} e^{2+e^{-e^4}+x} x^2-\frac {4}{5} \int e^{2+e^{-e^4}+x} \, dx-\frac {4}{5} \int e^{2+e^{-e^4}+x} x \, dx\\ &=\frac {6}{5} e^{2+e^{-e^4}+x}+\frac {2}{5} e^{2+e^{-e^4}+x} x^2+\frac {4}{5} \int e^{2+e^{-e^4}+x} \, dx\\ &=2 e^{2+e^{-e^4}+x}+\frac {2}{5} e^{2+e^{-e^4}+x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.00 \begin {gather*} \frac {2}{5} e^{2+e^{-e^4}+x} \left (5+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 1.10 \begin {gather*} \frac {2}{5} \, {\left (x^{2} + 5\right )} e^{\left ({\left ({\left (x + 2\right )} e^{\left (e^{4}\right )} + 1\right )} e^{\left (-e^{4}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 16, normalized size = 0.76 \begin {gather*} \frac {2}{5} \, {\left (x^{2} + 5\right )} e^{\left (x + e^{\left (-e^{4}\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.90
method | result | size |
risch | \(\frac {\left (2 x^{2}+10\right ) {\mathrm e}^{{\mathrm e}^{-{\mathrm e}^{4}}+2+x}}{5}\) | \(19\) |
gosper | \(\frac {2 \,{\mathrm e}^{\left (2 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}}+x} \left (x^{2}+5\right )}{5}\) | \(24\) |
default | \(\frac {2 \,{\mathrm e}^{\left (2 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}}} \left ({\mathrm e}^{x} x^{2}+5 \,{\mathrm e}^{x}\right )}{5}\) | \(28\) |
norman | \(2 \,{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{-{\mathrm e}^{4}}} {\mathrm e}^{x}+\frac {2 \,{\mathrm e}^{2} {\mathrm e}^{{\mathrm e}^{-{\mathrm e}^{4}}} x^{2} {\mathrm e}^{x}}{5}\) | \(29\) |
meijerg | \(-2 \,{\mathrm e}^{\left (2 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}}} \left (1-{\mathrm e}^{x}\right )-\frac {2 \,{\mathrm e}^{\left (2 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}}} \left (2-\frac {\left (3 x^{2}-6 x +6\right ) {\mathrm e}^{x}}{3}\right )}{5}+\frac {4 \,{\mathrm e}^{\left (2 \,{\mathrm e}^{{\mathrm e}^{4}}+1\right ) {\mathrm e}^{-{\mathrm e}^{4}}} \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )}{5}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 75, normalized size = 3.57 \begin {gather*} \frac {2}{5} \, {\left (x^{2} e^{\left (e^{\left (-e^{4}\right )} + 2\right )} - 2 \, x e^{\left (e^{\left (-e^{4}\right )} + 2\right )} + 2 \, e^{\left (e^{\left (-e^{4}\right )} + 2\right )}\right )} e^{x} + \frac {4}{5} \, {\left (x e^{\left (e^{\left (-e^{4}\right )} + 2\right )} - e^{\left (e^{\left (-e^{4}\right )} + 2\right )}\right )} e^{x} + 2 \, e^{\left (x + e^{\left (-e^{4}\right )} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 17, normalized size = 0.81 \begin {gather*} \frac {2\,{\mathrm {e}}^2\,{\mathrm {e}}^{{\mathrm {e}}^{-{\mathrm {e}}^4}}\,{\mathrm {e}}^x\,\left (x^2+5\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 34, normalized size = 1.62 \begin {gather*} \frac {\left (2 x^{2} e^{2} e^{e^{- e^{4}}} + 10 e^{2} e^{e^{- e^{4}}}\right ) e^{x}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________