Optimal. Leaf size=25 \[ \frac {1}{2} e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} \left (-4+14 x+7 x^2+22 x^3\right )}{22+44 x+22 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} \left (-4+14 x+7 x^2+22 x^3\right )}{22 (1+x)^2} \, dx\\ &=\frac {1}{22} \int \frac {e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} \left (-4+14 x+7 x^2+22 x^3\right )}{(1+x)^2} \, dx\\ &=\frac {1}{22} \int \left (-37 e^{-14+\frac {4}{11 x}+\frac {3}{1+x}}+22 e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} x-\frac {33 e^{-14+\frac {4}{11 x}+\frac {3}{1+x}}}{(1+x)^2}+\frac {66 e^{-14+\frac {4}{11 x}+\frac {3}{1+x}}}{1+x}\right ) \, dx\\ &=-\left (\frac {3}{2} \int \frac {e^{-14+\frac {4}{11 x}+\frac {3}{1+x}}}{(1+x)^2} \, dx\right )-\frac {37}{22} \int e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} \, dx+3 \int \frac {e^{-14+\frac {4}{11 x}+\frac {3}{1+x}}}{1+x} \, dx+\int e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} e^{-14+\frac {4}{11 x}+\frac {3}{1+x}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} \, x^{2} e^{\left (-\frac {154 \, x^{2} + 117 \, x - 4}{11 \, {\left (x^{2} + x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{2} \, x^{2} e^{\left (-\frac {154 \, x^{2} + 117 \, x - 4}{11 \, {\left (x^{2} + x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 26, normalized size = 1.04
method | result | size |
gosper | \(\frac {{\mathrm e}^{\frac {3}{x +1}} {\mathrm e}^{-14} {\mathrm e}^{\frac {4}{11 x}} x^{2}}{2}\) | \(26\) |
risch | \(\frac {x^{2} {\mathrm e}^{-\frac {154 x^{2}+117 x -4}{11 \left (x +1\right ) x}}}{2}\) | \(27\) |
norman | \(\frac {\left (\frac {{\mathrm e}^{-7} x^{2} {\mathrm e}^{\frac {4}{11 x}} {\mathrm e}^{\frac {3}{x +1}}}{2}+\frac {{\mathrm e}^{-7} x^{3} {\mathrm e}^{\frac {4}{11 x}} {\mathrm e}^{\frac {3}{x +1}}}{2}\right ) {\mathrm e}^{-7}}{x +1}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 20, normalized size = 0.80 \begin {gather*} \frac {1}{2} \, x^{2} e^{\left (\frac {3}{x + 1} + \frac {4}{11 \, x} - 14\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.56, size = 21, normalized size = 0.84 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{-14}\,{\mathrm {e}}^{\frac {4}{11\,x}}\,{\mathrm {e}}^{\frac {3}{x+1}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.09, size = 20, normalized size = 0.80 \begin {gather*} \frac {x^{2} e^{\frac {4}{11 x}} e^{\frac {3}{x + 1}}}{2 e^{14}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________