Optimal. Leaf size=22 \[ \log ^2(30)+\left (-2+(3-3 x) x+e^5 \log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 80, normalized size of antiderivative = 3.64, number of steps used = 9, number of rules used = 5, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {14, 2357, 2295, 2301, 2304} \begin {gather*} 9 x^4-18 x^3+3 \left (7-e^5\right ) x^2+3 e^5 x^2-6 e^5 x^2 \log (x)-6 \left (2-e^5\right ) x-6 e^5 x+e^{10} \log ^2(x)+6 e^5 x \log (x)-4 e^5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rule 2301
Rule 2304
Rule 2357
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (-2 e^5-3 \left (2-e^5\right ) x+3 \left (7-e^5\right ) x^2-27 x^3+18 x^4\right )}{x}+\frac {2 e^5 \left (e^5+3 x-6 x^2\right ) \log (x)}{x}\right ) \, dx\\ &=2 \int \frac {-2 e^5-3 \left (2-e^5\right ) x+3 \left (7-e^5\right ) x^2-27 x^3+18 x^4}{x} \, dx+\left (2 e^5\right ) \int \frac {\left (e^5+3 x-6 x^2\right ) \log (x)}{x} \, dx\\ &=2 \int \left (-3 \left (2-e^5\right )-\frac {2 e^5}{x}+3 \left (7-e^5\right ) x-27 x^2+18 x^3\right ) \, dx+\left (2 e^5\right ) \int \left (3 \log (x)+\frac {e^5 \log (x)}{x}-6 x \log (x)\right ) \, dx\\ &=-6 \left (2-e^5\right ) x+3 \left (7-e^5\right ) x^2-18 x^3+9 x^4-4 e^5 \log (x)+\left (6 e^5\right ) \int \log (x) \, dx-\left (12 e^5\right ) \int x \log (x) \, dx+\left (2 e^{10}\right ) \int \frac {\log (x)}{x} \, dx\\ &=-6 e^5 x-6 \left (2-e^5\right ) x+3 e^5 x^2+3 \left (7-e^5\right ) x^2-18 x^3+9 x^4-4 e^5 \log (x)+6 e^5 x \log (x)-6 e^5 x^2 \log (x)+e^{10} \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 52, normalized size = 2.36 \begin {gather*} -12 x+21 x^2-18 x^3+9 x^4-4 e^5 \log (x)+6 e^5 x \log (x)-6 e^5 x^2 \log (x)+e^{10} \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 42, normalized size = 1.91 \begin {gather*} 9 \, x^{4} - 18 \, x^{3} - 2 \, {\left (3 \, x^{2} - 3 \, x + 2\right )} e^{5} \log \relax (x) + e^{10} \log \relax (x)^{2} + 21 \, x^{2} - 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.44, size = 48, normalized size = 2.18 \begin {gather*} 9 \, x^{4} - 6 \, x^{2} e^{5} \log \relax (x) - 18 \, x^{3} + 6 \, x e^{5} \log \relax (x) + e^{10} \log \relax (x)^{2} + 21 \, x^{2} - 4 \, e^{5} \log \relax (x) - 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 49, normalized size = 2.23
method | result | size |
risch | \({\mathrm e}^{10} \ln \relax (x )^{2}+\left (-6 x^{2} {\mathrm e}^{5}+6 x \,{\mathrm e}^{5}\right ) \ln \relax (x )+9 x^{4}-18 x^{3}+21 x^{2}-12 x -4 \,{\mathrm e}^{5} \ln \relax (x )\) | \(49\) |
norman | \(-4 \,{\mathrm e}^{5} \ln \relax (x )+{\mathrm e}^{10} \ln \relax (x )^{2}-12 x +21 x^{2}-18 x^{3}+9 x^{4}+6 x \,{\mathrm e}^{5} \ln \relax (x )-6 x^{2} {\mathrm e}^{5} \ln \relax (x )\) | \(51\) |
default | \(-12 \,{\mathrm e}^{5} \left (\frac {x^{2} \ln \relax (x )}{2}-\frac {x^{2}}{4}\right )+9 x^{4}+{\mathrm e}^{10} \ln \relax (x )^{2}+6 \,{\mathrm e}^{5} \left (x \ln \relax (x )-x \right )-3 x^{2} {\mathrm e}^{5}-18 x^{3}+6 x \,{\mathrm e}^{5}+21 x^{2}-4 \,{\mathrm e}^{5} \ln \relax (x )-12 x\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 73, normalized size = 3.32 \begin {gather*} 9 \, x^{4} - 18 \, x^{3} - 3 \, x^{2} e^{5} + e^{10} \log \relax (x)^{2} + 21 \, x^{2} - 3 \, {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} e^{5} + 6 \, {\left (x \log \relax (x) - x\right )} e^{5} + 6 \, x e^{5} - 4 \, e^{5} \log \relax (x) - 12 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 48, normalized size = 2.18 \begin {gather*} 9\,x^4-18\,x^3-6\,{\mathrm {e}}^5\,x^2\,\ln \relax (x)+21\,x^2+6\,{\mathrm {e}}^5\,x\,\ln \relax (x)-12\,x+{\mathrm {e}}^{10}\,{\ln \relax (x)}^2-4\,{\mathrm {e}}^5\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 53, normalized size = 2.41 \begin {gather*} 9 x^{4} - 18 x^{3} + 21 x^{2} - 12 x + \left (- 6 x^{2} e^{5} + 6 x e^{5}\right ) \log {\relax (x )} + e^{10} \log {\relax (x )}^{2} - 4 e^{5} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________