Optimal. Leaf size=25 \[ e^{1+\frac {2 \log ^2(x) (x-\log (2 x))}{x^2}}+x^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.35, antiderivative size = 72, normalized size of antiderivative = 2.88, number of steps used = 3, number of rules used = 2, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {14, 2288} \begin {gather*} x^2+\frac {2^{-\frac {2 \log ^2(x)}{x^2}} e^{\frac {2 \log ^2(x)}{x}+1} \log (x) (2 x-x \log (x)) x^{-\frac {2 \log ^2(x)}{x^2}-3}}{\frac {2 \log (x)}{x^2}-\frac {\log ^2(x)}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x-2^{1-\frac {2 \log ^2(x)}{x^2}} e^{1+\frac {2 \log ^2(x)}{x}} x^{-3-\frac {2 \log ^2(x)}{x^2}} \log (x) (-2 x+\log (x)+x \log (x)+2 \log (2 x)-2 \log (x) \log (2 x))\right ) \, dx\\ &=x^2-\int 2^{1-\frac {2 \log ^2(x)}{x^2}} e^{1+\frac {2 \log ^2(x)}{x}} x^{-3-\frac {2 \log ^2(x)}{x^2}} \log (x) (-2 x+\log (x)+x \log (x)+2 \log (2 x)-2 \log (x) \log (2 x)) \, dx\\ &=x^2+\frac {2^{-\frac {2 \log ^2(x)}{x^2}} e^{1+\frac {2 \log ^2(x)}{x}} x^{-3-\frac {2 \log ^2(x)}{x^2}} \log (x) (2 x-x \log (x))}{\frac {2 \log (x)}{x^2}-\frac {\log ^2(x)}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 25, normalized size = 1.00 \begin {gather*} e^{1+\frac {2 \log ^2(x) (x-\log (2 x))}{x^2}}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 30, normalized size = 1.20 \begin {gather*} x^{2} + e^{\left (\frac {2 \, {\left ({\left (x - \log \relax (2)\right )} \log \relax (x)^{2} - \log \relax (x)^{3}\right )}}{x^{2}} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 34, normalized size = 1.36 \begin {gather*} x^{2} + e^{\left (\frac {2 \, x \log \relax (x)^{2} - 2 \, \log \relax (2) \log \relax (x)^{2} - 2 \, \log \relax (x)^{3} + x^{2}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 38, normalized size = 1.52
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \ln \relax (x )^{3}+2 \ln \relax (2) \ln \relax (x )^{2}-2 x \ln \relax (x )^{2}-x^{2}}{x^{2}}}+x^{2}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 36, normalized size = 1.44 \begin {gather*} x^{2} + e^{\left (\frac {2 \, \log \relax (x)^{2}}{x} - \frac {2 \, \log \relax (2) \log \relax (x)^{2}}{x^{2}} - \frac {2 \, \log \relax (x)^{3}}{x^{2}} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.69, size = 40, normalized size = 1.60 \begin {gather*} x^2+\frac {\mathrm {e}\,{\mathrm {e}}^{\frac {2\,{\ln \relax (x)}^2}{x}}\,{\mathrm {e}}^{-\frac {2\,{\ln \relax (x)}^3}{x^2}}}{2^{\frac {2\,{\ln \relax (x)}^2}{x^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 32, normalized size = 1.28 \begin {gather*} x^{2} + e e^{\frac {2 x \log {\relax (x )}^{2} - 2 \left (\log {\relax (x )} + \log {\relax (2 )}\right ) \log {\relax (x )}^{2}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________