Optimal. Leaf size=24 \[ \log \left (\log \left (\frac {-2+\frac {\log (15)}{x}}{e^5 \left (-5+e^5-x\right )^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 28, normalized size of antiderivative = 1.17, number of steps used = 3, number of rules used = 3, integrand size = 105, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6, 6688, 6684} \begin {gather*} \log \left (\log \left (-\frac {2 x-\log (15)}{e^5 x \left (x-e^5+5\right )^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^2+\left (5-e^5+3 x\right ) \log (15)}{\left (\left (10-2 e^5\right ) x^2+2 x^3+\left (-5 x+e^5 x-x^2\right ) \log (15)\right ) \log \left (\frac {-2 x+\log (15)}{e^{15} x+e^{10} \left (-10 x-2 x^2\right )+e^5 \left (25 x+10 x^2+x^3\right )}\right )} \, dx\\ &=\int \frac {-4 x^2+\left (5-e^5\right ) \log (15)+3 x \log (15)}{x \left (5-e^5+x\right ) (2 x-\log (15)) \log \left (\frac {-2 x+\log (15)}{e^5 x \left (5-e^5+x\right )^2}\right )} \, dx\\ &=\log \left (\log \left (-\frac {2 x-\log (15)}{e^5 x \left (5-e^5+x\right )^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 25, normalized size = 1.04 \begin {gather*} \log \left (\log \left (\frac {-2 x+\log (15)}{e^5 x \left (5-e^5+x\right )^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 45, normalized size = 1.88 \begin {gather*} \log \left (\log \left (-\frac {2 \, x - \log \left (15\right )}{x e^{15} - 2 \, {\left (x^{2} + 5 \, x\right )} e^{10} + {\left (x^{3} + 10 \, x^{2} + 25 \, x\right )} e^{5}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 47, normalized size = 1.96 \begin {gather*} \log \left (-\log \left (x^{3} e^{5} - 2 \, x^{2} e^{10} + 10 \, x^{2} e^{5} + x e^{15} - 10 \, x e^{10} + 25 \, x e^{5}\right ) + \log \left (-2 \, x + \log \left (15\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 46, normalized size = 1.92
method | result | size |
risch | \(\ln \left (\ln \left (\frac {\ln \relax (3)+\ln \relax (5)-2 x}{x \,{\mathrm e}^{15}+\left (-2 x^{2}-10 x \right ) {\mathrm e}^{10}+\left (x^{3}+10 x^{2}+25 x \right ) {\mathrm e}^{5}}\right )\right )\) | \(46\) |
norman | \(\ln \left (\ln \left (\frac {\ln \left (15\right )-2 x}{x \,{\mathrm e}^{15}+\left (-2 x^{2}-10 x \right ) {\mathrm e}^{10}+\left (x^{3}+10 x^{2}+25 x \right ) {\mathrm e}^{5}}\right )\right )\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 26, normalized size = 1.08 \begin {gather*} \log \left (-2 \, \log \left (x - e^{5} + 5\right ) - \log \relax (x) + \log \left (-2 \, x + \log \relax (5) + \log \relax (3)\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.19, size = 47, normalized size = 1.96 \begin {gather*} \ln \left (\ln \left (-\frac {2\,x-\ln \left (15\right )}{{\mathrm {e}}^5\,\left (x^3+10\,x^2+25\,x\right )-{\mathrm {e}}^{10}\,\left (2\,x^2+10\,x\right )+x\,{\mathrm {e}}^{15}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 42, normalized size = 1.75 \begin {gather*} \log {\left (\log {\left (\frac {- 2 x + \log {\left (15 \right )}}{x e^{15} + \left (- 2 x^{2} - 10 x\right ) e^{10} + \left (x^{3} + 10 x^{2} + 25 x\right ) e^{5}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________