Optimal. Leaf size=21 \[ x^2 \left (1+5 x+\frac {x^3}{\log ^2(4 x)}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.68, antiderivative size = 46, normalized size of antiderivative = 2.19, number of steps used = 33, number of rules used = 6, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.076, Rules used = {6742, 14, 2306, 2309, 2178, 2353} \begin {gather*} \frac {x^8}{\log ^4(4 x)}+\frac {10 x^6}{\log ^2(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+25 x^4+10 x^3+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x \left (1+15 x+50 x^2\right )-\frac {4 x^7}{\log ^5(4 x)}+\frac {8 x^7}{\log ^4(4 x)}-\frac {4 x^4 (1+5 x)}{\log ^3(4 x)}+\frac {10 x^4 (1+6 x)}{\log ^2(4 x)}\right ) \, dx\\ &=2 \int x \left (1+15 x+50 x^2\right ) \, dx-4 \int \frac {x^7}{\log ^5(4 x)} \, dx-4 \int \frac {x^4 (1+5 x)}{\log ^3(4 x)} \, dx+8 \int \frac {x^7}{\log ^4(4 x)} \, dx+10 \int \frac {x^4 (1+6 x)}{\log ^2(4 x)} \, dx\\ &=\frac {x^8}{\log ^4(4 x)}-\frac {8 x^8}{3 \log ^3(4 x)}+2 \int \left (x+15 x^2+50 x^3\right ) \, dx-4 \int \left (\frac {x^4}{\log ^3(4 x)}+\frac {5 x^5}{\log ^3(4 x)}\right ) \, dx-8 \int \frac {x^7}{\log ^4(4 x)} \, dx+10 \int \left (\frac {x^4}{\log ^2(4 x)}+\frac {6 x^5}{\log ^2(4 x)}\right ) \, dx+\frac {64}{3} \int \frac {x^7}{\log ^3(4 x)} \, dx\\ &=x^2+10 x^3+25 x^4+\frac {x^8}{\log ^4(4 x)}-\frac {32 x^8}{3 \log ^2(4 x)}-4 \int \frac {x^4}{\log ^3(4 x)} \, dx+10 \int \frac {x^4}{\log ^2(4 x)} \, dx-20 \int \frac {x^5}{\log ^3(4 x)} \, dx-\frac {64}{3} \int \frac {x^7}{\log ^3(4 x)} \, dx+60 \int \frac {x^5}{\log ^2(4 x)} \, dx+\frac {256}{3} \int \frac {x^7}{\log ^2(4 x)} \, dx\\ &=x^2+10 x^3+25 x^4+\frac {x^8}{\log ^4(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+\frac {10 x^6}{\log ^2(4 x)}-\frac {10 x^5}{\log (4 x)}-\frac {60 x^6}{\log (4 x)}-\frac {256 x^8}{3 \log (4 x)}-10 \int \frac {x^4}{\log ^2(4 x)} \, dx+50 \int \frac {x^4}{\log (4 x)} \, dx-60 \int \frac {x^5}{\log ^2(4 x)} \, dx-\frac {256}{3} \int \frac {x^7}{\log ^2(4 x)} \, dx+360 \int \frac {x^5}{\log (4 x)} \, dx+\frac {2048}{3} \int \frac {x^7}{\log (4 x)} \, dx\\ &=x^2+10 x^3+25 x^4+\frac {x^8}{\log ^4(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+\frac {10 x^6}{\log ^2(4 x)}+\frac {1}{96} \operatorname {Subst}\left (\int \frac {e^{8 x}}{x} \, dx,x,\log (4 x)\right )+\frac {25}{512} \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (4 x)\right )+\frac {45}{512} \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (4 x)\right )-50 \int \frac {x^4}{\log (4 x)} \, dx-360 \int \frac {x^5}{\log (4 x)} \, dx-\frac {2048}{3} \int \frac {x^7}{\log (4 x)} \, dx\\ &=x^2+10 x^3+25 x^4+\frac {25}{512} \text {Ei}(5 \log (4 x))+\frac {45}{512} \text {Ei}(6 \log (4 x))+\frac {1}{96} \text {Ei}(8 \log (4 x))+\frac {x^8}{\log ^4(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+\frac {10 x^6}{\log ^2(4 x)}-\frac {1}{96} \operatorname {Subst}\left (\int \frac {e^{8 x}}{x} \, dx,x,\log (4 x)\right )-\frac {25}{512} \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (4 x)\right )-\frac {45}{512} \operatorname {Subst}\left (\int \frac {e^{6 x}}{x} \, dx,x,\log (4 x)\right )\\ &=x^2+10 x^3+25 x^4+\frac {x^8}{\log ^4(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+\frac {10 x^6}{\log ^2(4 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.19, size = 46, normalized size = 2.19 \begin {gather*} x^2+10 x^3+25 x^4+\frac {x^8}{\log ^4(4 x)}+\frac {2 x^5}{\log ^2(4 x)}+\frac {10 x^6}{\log ^2(4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 49, normalized size = 2.33 \begin {gather*} \frac {x^{8} + {\left (25 \, x^{4} + 10 \, x^{3} + x^{2}\right )} \log \left (4 \, x\right )^{4} + 2 \, {\left (5 \, x^{6} + x^{5}\right )} \log \left (4 \, x\right )^{2}}{\log \left (4 \, x\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 46, normalized size = 2.19 \begin {gather*} 25 \, x^{4} + \frac {x^{8}}{\log \left (4 \, x\right )^{4}} + \frac {10 \, x^{6}}{\log \left (4 \, x\right )^{2}} + 10 \, x^{3} + \frac {2 \, x^{5}}{\log \left (4 \, x\right )^{2}} + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 46, normalized size = 2.19
method | result | size |
risch | \(25 x^{4}+10 x^{3}+x^{2}+\frac {x^{5} \left (x^{3}+10 x \ln \left (4 x \right )^{2}+2 \ln \left (4 x \right )^{2}\right )}{\ln \left (4 x \right )^{4}}\) | \(46\) |
derivativedivides | \(25 x^{4}+10 x^{3}+\frac {10 x^{6}}{\ln \left (4 x \right )^{2}}+\frac {x^{8}}{\ln \left (4 x \right )^{4}}+x^{2}+\frac {2 x^{5}}{\ln \left (4 x \right )^{2}}\) | \(47\) |
default | \(25 x^{4}+10 x^{3}+\frac {10 x^{6}}{\ln \left (4 x \right )^{2}}+\frac {x^{8}}{\ln \left (4 x \right )^{4}}+x^{2}+\frac {2 x^{5}}{\ln \left (4 x \right )^{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 74, normalized size = 3.52 \begin {gather*} 25 \, x^{4} + 10 \, x^{3} + x^{2} + \frac {25}{512} \, \Gamma \left (-1, -5 \, \log \left (4 \, x\right )\right ) + \frac {45}{512} \, \Gamma \left (-1, -6 \, \log \left (4 \, x\right )\right ) + \frac {25}{256} \, \Gamma \left (-2, -5 \, \log \left (4 \, x\right )\right ) + \frac {45}{256} \, \Gamma \left (-2, -6 \, \log \left (4 \, x\right )\right ) + \frac {1}{16} \, \Gamma \left (-3, -8 \, \log \left (4 \, x\right )\right ) + \frac {1}{4} \, \Gamma \left (-4, -8 \, \log \left (4 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.58, size = 39, normalized size = 1.86 \begin {gather*} \frac {x^8+2\,x^5\,{\ln \left (4\,x\right )}^2\,\left (5\,x+1\right )}{{\ln \left (4\,x\right )}^4}+x^2\,{\left (5\,x+1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 39, normalized size = 1.86 \begin {gather*} 25 x^{4} + 10 x^{3} + x^{2} + \frac {x^{8} + \left (10 x^{6} + 2 x^{5}\right ) \log {\left (4 x \right )}^{2}}{\log {\left (4 x \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________