Optimal. Leaf size=12 \[ 2 x^2+\frac {1}{x+\log (16)} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {27, 1850} \begin {gather*} 2 x^2+\frac {1}{x+\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+4 x^3+8 x^2 \log (16)+4 x \log ^2(16)}{(x+\log (16))^2} \, dx\\ &=\int \left (4 x-\frac {1}{(x+\log (16))^2}\right ) \, dx\\ &=2 x^2+\frac {1}{x+\log (16)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 1.50 \begin {gather*} 2 x^2-2 \log ^2(16)+\frac {1}{x+\log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 23, normalized size = 1.92 \begin {gather*} \frac {2 \, x^{3} + 8 \, x^{2} \log \relax (2) + 1}{x + 4 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 14, normalized size = 1.17 \begin {gather*} 2 \, x^{2} + \frac {1}{x + 4 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 15, normalized size = 1.25
method | result | size |
default | \(\frac {1}{x +4 \ln \relax (2)}+2 x^{2}\) | \(15\) |
risch | \(\frac {1}{x +4 \ln \relax (2)}+2 x^{2}\) | \(17\) |
gosper | \(\frac {2 x^{3}+8 x^{2} \ln \relax (2)+1}{x +4 \ln \relax (2)}\) | \(24\) |
norman | \(\frac {2 x^{3}+8 x^{2} \ln \relax (2)+1}{x +4 \ln \relax (2)}\) | \(24\) |
meijerg | \(-\frac {x}{16 \ln \relax (2)^{2} \left (1+\frac {x}{4 \ln \relax (2)}\right )}+64 \ln \relax (2)^{2} \left (-\frac {x}{4 \ln \relax (2) \left (1+\frac {x}{4 \ln \relax (2)}\right )}+\ln \left (1+\frac {x}{4 \ln \relax (2)}\right )\right )+128 \ln \relax (2)^{2} \left (\frac {x \left (\frac {3 x}{4 \ln \relax (2)}+6\right )}{12 \ln \relax (2) \left (1+\frac {x}{4 \ln \relax (2)}\right )}-2 \ln \left (1+\frac {x}{4 \ln \relax (2)}\right )\right )+64 \ln \relax (2)^{2} \left (-\frac {x \left (-\frac {x^{2}}{8 \ln \relax (2)^{2}}+\frac {3 x}{2 \ln \relax (2)}+12\right )}{16 \ln \relax (2) \left (1+\frac {x}{4 \ln \relax (2)}\right )}+3 \ln \left (1+\frac {x}{4 \ln \relax (2)}\right )\right )\) | \(156\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 14, normalized size = 1.17 \begin {gather*} 2 \, x^{2} + \frac {1}{x + 4 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.51, size = 58, normalized size = 4.83 \begin {gather*} 2\,x^2+\frac {\mathrm {atanh}\left (\frac {2\,x+8\,\ln \relax (2)}{2\,\sqrt {4\,\ln \relax (2)+\ln \left (16\right )}\,\sqrt {4\,\ln \relax (2)-\ln \left (16\right )}}\right )}{\sqrt {4\,\ln \relax (2)+\ln \left (16\right )}\,\sqrt {4\,\ln \relax (2)-\ln \left (16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 1.00 \begin {gather*} 2 x^{2} + \frac {1}{x + 4 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________