Optimal. Leaf size=17 \[ \frac {1}{4} x \left (x-100 \log \left (\frac {5+x}{5}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 27, normalized size of antiderivative = 1.59, number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {6742, 77, 2389, 2295} \begin {gather*} \frac {x^2}{4}-25 (x+5) \log \left (\frac {x+5}{5}\right )+125 \log (x+5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 77
Rule 2295
Rule 2389
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-45+x) x}{2 (5+x)}-25 \log \left (1+\frac {x}{5}\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {(-45+x) x}{5+x} \, dx-25 \int \log \left (1+\frac {x}{5}\right ) \, dx\\ &=\frac {1}{2} \int \left (-50+x+\frac {250}{5+x}\right ) \, dx-125 \operatorname {Subst}\left (\int \log (x) \, dx,x,1+\frac {x}{5}\right )\\ &=\frac {x^2}{4}-25 (5+x) \log \left (\frac {5+x}{5}\right )+125 \log (5+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 39, normalized size = 2.29 \begin {gather*} 25 x-\frac {55 (5+x)}{2}+\frac {1}{4} (5+x)^2-25 (5+x) \log \left (\frac {5+x}{5}\right )+125 \log (5+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{4} \, x^{2} - 25 \, x \log \left (\frac {1}{5} \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{4} \, x^{2} - 25 \, x \log \left (\frac {1}{5} \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 16, normalized size = 0.94
method | result | size |
norman | \(\frac {x^{2}}{4}-25 \ln \left (1+\frac {x}{5}\right ) x\) | \(16\) |
risch | \(\frac {x^{2}}{4}-25 \ln \left (1+\frac {x}{5}\right ) x\) | \(16\) |
derivativedivides | \(-125 \left (1+\frac {x}{5}\right ) \ln \left (1+\frac {x}{5}\right )-\frac {25}{2}-\frac {5 x}{2}+\frac {25 \left (1+\frac {x}{5}\right )^{2}}{4}+125 \ln \left (1+\frac {x}{5}\right )\) | \(36\) |
default | \(-125 \left (1+\frac {x}{5}\right ) \ln \left (1+\frac {x}{5}\right )-\frac {25}{2}-\frac {5 x}{2}+\frac {25 \left (1+\frac {x}{5}\right )^{2}}{4}+125 \ln \left (1+\frac {x}{5}\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 38, normalized size = 2.24 \begin {gather*} \frac {1}{4} \, x^{2} + 125 \, \log \relax (5) \log \left (x + 5\right ) - 125 \, \log \left (x + 5\right )^{2} - 25 \, {\left (x - 5 \, \log \left (x + 5\right )\right )} \log \left (\frac {1}{5} \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 15, normalized size = 0.88 \begin {gather*} \frac {x^2}{4}-25\,x\,\ln \left (\frac {x}{5}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.82 \begin {gather*} \frac {x^{2}}{4} - 25 x \log {\left (\frac {x}{5} + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________