Optimal. Leaf size=27 \[ -2 \left (3-e^x+\frac {5}{25+e^5}-x\right ) (x-\log (3)) \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 66, normalized size of antiderivative = 2.44, number of steps used = 5, number of rules used = 4, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 2187, 2176, 2194} \begin {gather*} \frac {50 x^2}{25+e^5}+\frac {e^5 (3-2 x)^2}{2 \left (25+e^5\right )}-2 e^x+2 e^x (x+1-\log (3))-2 x \left (\frac {80}{25+e^5}+\log (3)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2187
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-160+100 x+e^5 (-6+4 x)+\left (-50-2 e^5\right ) \log (3)+e^x \left (50+50 x+e^5 (2+2 x)+\left (-50-2 e^5\right ) \log (3)\right )\right ) \, dx}{25+e^5}\\ &=\frac {e^5 (3-2 x)^2}{2 \left (25+e^5\right )}+\frac {50 x^2}{25+e^5}-2 x \left (\frac {80}{25+e^5}+\log (3)\right )+\frac {\int e^x \left (50+50 x+e^5 (2+2 x)+\left (-50-2 e^5\right ) \log (3)\right ) \, dx}{25+e^5}\\ &=\frac {e^5 (3-2 x)^2}{2 \left (25+e^5\right )}+\frac {50 x^2}{25+e^5}-2 x \left (\frac {80}{25+e^5}+\log (3)\right )+\frac {\int e^x \left (2 \left (25+e^5\right ) x+2 \left (25+e^5\right ) (1-\log (3))\right ) \, dx}{25+e^5}\\ &=\frac {e^5 (3-2 x)^2}{2 \left (25+e^5\right )}+\frac {50 x^2}{25+e^5}+2 e^x (1+x-\log (3))-2 x \left (\frac {80}{25+e^5}+\log (3)\right )-2 \int e^x \, dx\\ &=-2 e^x+\frac {e^5 (3-2 x)^2}{2 \left (25+e^5\right )}+\frac {50 x^2}{25+e^5}+2 e^x (1+x-\log (3))-2 x \left (\frac {80}{25+e^5}+\log (3)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.06, size = 64, normalized size = 2.37 \begin {gather*} \frac {2 \left (-80 x+25 x^2+e^5 x^2+e^5 x (-3-\log (3))+25 e^x (x-\log (3))+e^{5+x} (x-\log (3))-25 x \log (3)\right )}{25+e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 58, normalized size = 2.15 \begin {gather*} \frac {2 \, {\left (25 \, x^{2} + {\left (x^{2} - 3 \, x\right )} e^{5} + {\left (x e^{5} - {\left (e^{5} + 25\right )} \log \relax (3) + 25 \, x\right )} e^{x} - {\left (x e^{5} + 25 \, x\right )} \log \relax (3) - 80 \, x\right )}}{e^{5} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 58, normalized size = 2.15 \begin {gather*} -\frac {2 \, {\left (x {\left (e^{5} + 25\right )} \log \relax (3) - 25 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{5} - {\left (x - \log \relax (3)\right )} e^{\left (x + 5\right )} - 25 \, {\left (x - \log \relax (3)\right )} e^{x} + 80 \, x\right )}}{e^{5} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 42, normalized size = 1.56
method | result | size |
norman | \(2 x^{2}+2 \,{\mathrm e}^{x} x -2 \ln \relax (3) {\mathrm e}^{x}-\frac {2 \left ({\mathrm e}^{5} \ln \relax (3)+3 \,{\mathrm e}^{5}+25 \ln \relax (3)+80\right ) x}{{\mathrm e}^{5}+25}\) | \(42\) |
default | \(\frac {-160 x +{\mathrm e}^{5} \left (2 x^{2}-6 x \right )-2 x \,{\mathrm e}^{5} \ln \relax (3)-50 x \ln \relax (3)+50 \,{\mathrm e}^{x} x -50 \ln \relax (3) {\mathrm e}^{x}+2 x \,{\mathrm e}^{5} {\mathrm e}^{x}-2 \,{\mathrm e}^{5} {\mathrm e}^{x} \ln \relax (3)+50 x^{2}}{{\mathrm e}^{5}+25}\) | \(67\) |
risch | \(-\frac {2 x \,{\mathrm e}^{5} \ln \relax (3)}{{\mathrm e}^{5}+25}+\frac {2 x^{2} {\mathrm e}^{5}}{{\mathrm e}^{5}+25}-\frac {6 x \,{\mathrm e}^{5}}{{\mathrm e}^{5}+25}-\frac {50 x \ln \relax (3)}{{\mathrm e}^{5}+25}+\frac {50 x^{2}}{{\mathrm e}^{5}+25}-\frac {160 x}{{\mathrm e}^{5}+25}+\frac {\left (-2 \,{\mathrm e}^{5} \ln \relax (3)+2 x \,{\mathrm e}^{5}-50 \ln \relax (3)+50 x \right ) {\mathrm e}^{x}}{{\mathrm e}^{5}+25}\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 57, normalized size = 2.11 \begin {gather*} -\frac {2 \, {\left (x {\left (e^{5} + 25\right )} \log \relax (3) - 25 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{5} - {\left (x {\left (e^{5} + 25\right )} - e^{5} \log \relax (3) - 25 \, \log \relax (3)\right )} e^{x} + 80 \, x\right )}}{e^{5} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 57, normalized size = 2.11 \begin {gather*} \frac {x^2\,\left (2\,{\mathrm {e}}^5+50\right )-x\,\left (6\,{\mathrm {e}}^5+50\,\ln \relax (3)+2\,{\mathrm {e}}^5\,\ln \relax (3)+160\right )-2\,{\mathrm {e}}^x\,\ln \relax (3)\,\left ({\mathrm {e}}^5+25\right )+x\,{\mathrm {e}}^x\,\left (2\,{\mathrm {e}}^5+50\right )}{{\mathrm {e}}^5+25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 44, normalized size = 1.63 \begin {gather*} 2 x^{2} + \frac {x \left (- 6 e^{5} - 2 e^{5} \log {\relax (3 )} - 160 - 50 \log {\relax (3 )}\right )}{25 + e^{5}} + \left (2 x - 2 \log {\relax (3 )}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________