Optimal. Leaf size=25 \[ e^{e^5} \left (1+x+\left (e^{4-\frac {16}{x}-x}+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 68, normalized size of antiderivative = 2.72, number of steps used = 5, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {12, 14, 6706, 2288} \begin {gather*} e^{e^5} x^2-\frac {2 e^{-x-\frac {16}{x}+e^5+4} \left (16-x^2\right )}{\left (1-\frac {16}{x^2}\right ) x}+e^{e^5} x+e^{-2 x-\frac {32}{x}+e^5+8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{e^5} \int \frac {x^2+2 x^3+e^{\frac {2 \left (-16+4 x-x^2\right )}{x}} \left (32-2 x^2\right )+e^{\frac {-16+4 x-x^2}{x}} \left (32 x+2 x^2-2 x^3\right )}{x^2} \, dx\\ &=e^{e^5} \int \left (1+2 x-\frac {2 e^{8-\frac {32}{x}-2 x} (-4+x) (4+x)}{x^2}-\frac {2 e^{4-\frac {16}{x}-x} \left (-16-x+x^2\right )}{x}\right ) \, dx\\ &=e^{e^5} x+e^{e^5} x^2-\left (2 e^{e^5}\right ) \int \frac {e^{8-\frac {32}{x}-2 x} (-4+x) (4+x)}{x^2} \, dx-\left (2 e^{e^5}\right ) \int \frac {e^{4-\frac {16}{x}-x} \left (-16-x+x^2\right )}{x} \, dx\\ &=e^{8+e^5-\frac {32}{x}-2 x}+e^{e^5} x+e^{e^5} x^2-\frac {2 e^{4+e^5-\frac {16}{x}-x} \left (16-x^2\right )}{\left (1-\frac {16}{x^2}\right ) x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 38, normalized size = 1.52 \begin {gather*} e^{e^5} \left (e^{8-\frac {32}{x}-2 x}+x+2 e^{4-\frac {16}{x}-x} x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 40, normalized size = 1.60 \begin {gather*} {\left (x^{2} + 2 \, x e^{\left (-\frac {x^{2} - 4 \, x + 16}{x}\right )} + x + e^{\left (-\frac {2 \, {\left (x^{2} - 4 \, x + 16\right )}}{x}\right )}\right )} e^{\left (e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 40, normalized size = 1.60 \begin {gather*} {\left (x^{2} + 2 \, x e^{\left (-\frac {x^{2} - 4 \, x + 16}{x}\right )} + x + e^{\left (-\frac {2 \, {\left (x^{2} - 4 \, x + 16\right )}}{x}\right )}\right )} e^{\left (e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.30, size = 55, normalized size = 2.20
method | result | size |
risch | \(x^{2} {\mathrm e}^{{\mathrm e}^{5}}+2 x \,{\mathrm e}^{\frac {x \,{\mathrm e}^{5}-x^{2}+4 x -16}{x}}+{\mathrm e}^{\frac {x \,{\mathrm e}^{5}-2 x^{2}+8 x -32}{x}}+x \,{\mathrm e}^{{\mathrm e}^{5}}\) | \(55\) |
norman | \(\frac {x^{2} {\mathrm e}^{{\mathrm e}^{5}}+{\mathrm e}^{{\mathrm e}^{5}} x^{3}+x \,{\mathrm e}^{{\mathrm e}^{5}} {\mathrm e}^{\frac {-2 x^{2}+8 x -32}{x}}+2 x^{2} {\mathrm e}^{{\mathrm e}^{5}} {\mathrm e}^{\frac {-x^{2}+4 x -16}{x}}}{x}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 35, normalized size = 1.40 \begin {gather*} {\left (x^{2} + {\left (2 \, x e^{\left (x - \frac {16}{x} + 4\right )} + e^{\left (-\frac {32}{x} + 8\right )}\right )} e^{\left (-2 \, x\right )} + x\right )} e^{\left (e^{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.57, size = 47, normalized size = 1.88 \begin {gather*} x^2\,{\mathrm {e}}^{{\mathrm {e}}^5}+x\,{\mathrm {e}}^{{\mathrm {e}}^5}+{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^8\,{\mathrm {e}}^{-\frac {32}{x}}\,{\mathrm {e}}^{{\mathrm {e}}^5}+2\,x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {16}{x}}\,{\mathrm {e}}^{{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 53, normalized size = 2.12 \begin {gather*} x^{2} e^{e^{5}} + 2 x e^{\frac {- x^{2} + 4 x - 16}{x}} e^{e^{5}} + x e^{e^{5}} + e^{\frac {2 \left (- x^{2} + 4 x - 16\right )}{x}} e^{e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________