Optimal. Leaf size=27 \[ -\frac {100}{e^5 x}+2 x \log \left (x+\frac {-3+2 x}{4 x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 4.44, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 23, number of rules used = 10, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 1594, 6742, 2079, 800, 634, 618, 204, 628, 2523} \begin {gather*} 2 x \log \left (-\frac {-4 x^3-2 x+3}{4 x^2}\right )-\frac {100}{e^5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 1594
Rule 2079
Rule 2523
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-300+200 x+400 x^3+e^5 \left (12 x^2-4 x^3+8 x^5\right )+e^5 \left (-6 x^2+4 x^3+8 x^5\right ) \log \left (\frac {-3+2 x+4 x^3}{4 x^2}\right )}{-3 x^2+2 x^3+4 x^5} \, dx}{e^5}\\ &=\frac {\int \frac {-300+200 x+400 x^3+e^5 \left (12 x^2-4 x^3+8 x^5\right )+e^5 \left (-6 x^2+4 x^3+8 x^5\right ) \log \left (\frac {-3+2 x+4 x^3}{4 x^2}\right )}{x^2 \left (-3+2 x+4 x^3\right )} \, dx}{e^5}\\ &=\frac {\int \left (\frac {4 \left (75-50 x-3 e^5 x^2-100 \left (1-\frac {e^5}{100}\right ) x^3-2 e^5 x^5\right )}{x^2 \left (3-2 x-4 x^3\right )}+2 e^5 \log \left (\frac {-3+2 x+4 x^3}{4 x^2}\right )\right ) \, dx}{e^5}\\ &=2 \int \log \left (\frac {-3+2 x+4 x^3}{4 x^2}\right ) \, dx+\frac {4 \int \frac {75-50 x-3 e^5 x^2-100 \left (1-\frac {e^5}{100}\right ) x^3-2 e^5 x^5}{x^2 \left (3-2 x-4 x^3\right )} \, dx}{e^5}\\ &=2 x \log \left (-\frac {3-2 x-4 x^3}{4 x^2}\right )-2 \int \frac {-6+2 x-4 x^3}{3-2 x-4 x^3} \, dx+\frac {4 \int \left (\frac {e^5}{2}+\frac {25}{x^2}-\frac {e^5 (-9+4 x)}{2 \left (-3+2 x+4 x^3\right )}\right ) \, dx}{e^5}\\ &=-\frac {100}{e^5 x}+2 x+2 x \log \left (-\frac {3-2 x-4 x^3}{4 x^2}\right )-2 \int \frac {-9+4 x}{-3+2 x+4 x^3} \, dx-2 \int \left (1-\frac {9-4 x}{3-2 x-4 x^3}\right ) \, dx\\ &=-\frac {100}{e^5 x}+2 x \log \left (-\frac {3-2 x-4 x^3}{4 x^2}\right )+2 \int \frac {9-4 x}{3-2 x-4 x^3} \, dx-32 \int \frac {-9+4 x}{\left (\frac {2}{3} \left (\frac {2\ 3^{2/3}}{\sqrt [3]{27+\sqrt {753}}}-\sqrt [3]{3 \left (27+\sqrt {753}\right )}\right )+4 x\right ) \left (\frac {4}{9} \left (6+\frac {12 \sqrt [3]{3}}{\left (27+\sqrt {753}\right )^{2/3}}+\left (3 \left (27+\sqrt {753}\right )\right )^{2/3}\right )-\frac {8 \left (2 \sqrt [3]{\frac {3}{27+\sqrt {753}}}-\sqrt [3]{27+\sqrt {753}}\right ) x}{3^{2/3}}+16 x^2\right )} \, dx\\ &=-\frac {100}{e^5 x}+2 x \log \left (-\frac {3-2 x-4 x^3}{4 x^2}\right )+32 \int \frac {9-4 x}{\left (-\frac {2}{3} \left (\frac {2\ 3^{2/3}}{\sqrt [3]{27+\sqrt {753}}}-\sqrt [3]{3 \left (27+\sqrt {753}\right )}\right )-4 x\right ) \left (\frac {4}{9} \left (6+\frac {12 \sqrt [3]{3}}{\left (27+\sqrt {753}\right )^{2/3}}+\left (3 \left (27+\sqrt {753}\right )\right )^{2/3}\right )-\frac {8 \left (2 \sqrt [3]{\frac {3}{27+\sqrt {753}}}-\sqrt [3]{27+\sqrt {753}}\right ) x}{3^{2/3}}+16 x^2\right )} \, dx-32 \int \left (\frac {\left (27+\sqrt {753}\right )^{2/3} \left (-4 3^{2/3}-27 \sqrt [3]{27+\sqrt {753}}+2 \sqrt [3]{3} \left (27+\sqrt {753}\right )^{2/3}\right )}{8 \left (4 \sqrt [3]{3}+\sqrt [6]{3} \left (9 \sqrt {3}+\sqrt {251}\right ) \sqrt [3]{27+\sqrt {753}}-2 \left (27+\sqrt {753}\right )^{2/3}\right ) \left (2\ 3^{2/3}-\sqrt [3]{3} \left (27+\sqrt {753}\right )^{2/3}+6 \sqrt [3]{27+\sqrt {753}} x\right )}+\frac {\left (27+\sqrt {753}\right )^{2/3} \left (-\left (\left (9\ 3^{2/3}-\sqrt [6]{3} \sqrt {251}\right ) \sqrt [3]{27+\sqrt {753}}\right )+2 \left (27+\sqrt {753}\right )^{2/3}+\sqrt [3]{3} \left (247+9 \sqrt {753}\right )+\sqrt [3]{27+\sqrt {753}} \left (4\ 3^{2/3}+27 \sqrt [3]{27+\sqrt {753}}-2 \sqrt [3]{3} \left (27+\sqrt {753}\right )^{2/3}\right ) x\right )}{4 \left (4 \sqrt [3]{3}+\sqrt [6]{3} \left (9 \sqrt {3}+\sqrt {251}\right ) \sqrt [3]{27+\sqrt {753}}-2 \left (27+\sqrt {753}\right )^{2/3}\right ) \left (4 \sqrt [3]{3}+\sqrt [6]{3} \left (9 \sqrt {3}+\sqrt {251}\right ) \sqrt [3]{27+\sqrt {753}}+2 \left (27+\sqrt {753}\right )^{2/3}+2\ 3^{2/3} \left (9\ 3^{2/3}+\sqrt [6]{3} \sqrt {251}-2 \sqrt [3]{27+\sqrt {753}}\right ) x+12 \left (27+\sqrt {753}\right )^{2/3} x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 30, normalized size = 1.11 \begin {gather*} -\frac {100}{e^5 x}+2 x \log \left (\frac {-3+2 x+4 x^3}{4 x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 31, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (x^{2} e^{5} \log \left (\frac {4 \, x^{3} + 2 \, x - 3}{4 \, x^{2}}\right ) - 50\right )} e^{\left (-5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 31, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (x^{2} e^{5} \log \left (\frac {4 \, x^{3} + 2 \, x - 3}{4 \, x^{2}}\right ) - 50\right )} e^{\left (-5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 28, normalized size = 1.04
method | result | size |
risch | \(2 x \ln \left (\frac {4 x^{3}+2 x -3}{4 x^{2}}\right )-\frac {100 \,{\mathrm e}^{-5}}{x}\) | \(28\) |
norman | \(\frac {-100 \,{\mathrm e}^{-5}+2 x^{2} \ln \left (\frac {4 x^{3}+2 x -3}{4 x^{2}}\right )}{x}\) | \(33\) |
default | \({\mathrm e}^{-5} \left (-4 x \,{\mathrm e}^{5} \ln \relax (2)+2 \,{\mathrm e}^{5} x \ln \left (\frac {4 x^{3}+2 x -3}{x^{2}}\right )-{\mathrm e}^{5} \left (\munderset {\textit {\_R} =\RootOf \left (4 \textit {\_Z}^{3}+2 \textit {\_Z} -3\right )}{\sum }\frac {\left (-4 \textit {\_R} +9\right ) \ln \left (x -\textit {\_R} \right )}{6 \textit {\_R}^{2}+1}\right )-\frac {100}{x}-\left (\munderset {\textit {\_R} =\RootOf \left (4 \textit {\_Z}^{3}+2 \textit {\_Z} -3\right )}{\sum }\frac {\left (4 \textit {\_R} -9\right ) \ln \left (x -\textit {\_R} \right )}{6 \textit {\_R}^{2}+1}\right ) {\mathrm e}^{5}\right )\) | \(117\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 45, normalized size = 1.67 \begin {gather*} -\frac {2 \, {\left (2 \, x^{2} e^{5} \log \relax (2) - x^{2} e^{5} \log \left (4 \, x^{3} + 2 \, x - 3\right ) + 2 \, x^{2} e^{5} \log \relax (x) + 50\right )} e^{\left (-5\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.79, size = 24, normalized size = 0.89 \begin {gather*} 2\,x\,\ln \left (\frac {x^3+\frac {x}{2}-\frac {3}{4}}{x^2}\right )-\frac {100\,{\mathrm {e}}^{-5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.89 \begin {gather*} 2 x \log {\left (\frac {x^{3} + \frac {x}{2} - \frac {3}{4}}{x^{2}} \right )} - \frac {100}{x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________