Optimal. Leaf size=20 \[ -e^{4-x}+e^{2 x}+\frac {1}{(-3+x)^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 95, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 6742, 2194} \begin {gather*} -e^{4-x}+e^{2 x}+\frac {1}{(x-3)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (4 e^x-e^4 (-3+x)^5-2 e^{3 x} (-3+x)^5\right )}{(3-x)^5} \, dx\\ &=\int \left (e^{4-x}+2 e^{2 x}-\frac {4}{(-3+x)^5}\right ) \, dx\\ &=\frac {1}{(-3+x)^4}+2 \int e^{2 x} \, dx+\int e^{4-x} \, dx\\ &=-e^{4-x}+e^{2 x}+\frac {1}{(-3+x)^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 1.00 \begin {gather*} -e^{4-x}+e^{2 x}+\frac {1}{(-3+x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 76, normalized size = 3.80 \begin {gather*} -\frac {{\left ({\left (x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81\right )} e^{4} - {\left (x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81\right )} e^{\left (3 \, x\right )} - e^{x}\right )} e^{\left (-x\right )}}{x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 112, normalized size = 5.60 \begin {gather*} \frac {x^{4} e^{\left (2 \, x\right )} - x^{4} e^{\left (-x + 4\right )} - 12 \, x^{3} e^{\left (2 \, x\right )} + 12 \, x^{3} e^{\left (-x + 4\right )} + 54 \, x^{2} e^{\left (2 \, x\right )} - 54 \, x^{2} e^{\left (-x + 4\right )} - 108 \, x e^{\left (2 \, x\right )} + 108 \, x e^{\left (-x + 4\right )} + 81 \, e^{\left (2 \, x\right )} - 81 \, e^{\left (-x + 4\right )} + 1}{x^{4} - 12 \, x^{3} + 54 \, x^{2} - 108 \, x + 81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 34, normalized size = 1.70
method | result | size |
risch | \(\frac {1}{x^{4}-12 x^{3}+54 x^{2}-108 x +81}+{\mathrm e}^{2 x}-{\mathrm e}^{-x +4}\) | \(34\) |
norman | \(\frac {\left (x^{4} {\mathrm e}^{3 x}+{\mathrm e}^{x}+81 \,{\mathrm e}^{3 x}+108 x \,{\mathrm e}^{4}-108 x \,{\mathrm e}^{3 x}-54 x^{2} {\mathrm e}^{4}+54 x^{2} {\mathrm e}^{3 x}+12 x^{3} {\mathrm e}^{4}-12 x^{3} {\mathrm e}^{3 x}-x^{4} {\mathrm e}^{4}-81 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-x}}{\left (x -3\right )^{4}}\) | \(83\) |
default | \({\mathrm e}^{4} \left (-{\mathrm e}^{-x}-\frac {9 \,{\mathrm e}^{-x} \left (11 x^{3}-30 x^{2}-15 x +72\right )}{8 \left (x^{4}-12 x^{3}+54 x^{2}-108 x +81\right )}-\frac {21 \,{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{8}\right )+\frac {1}{\left (x -3\right )^{4}}-243 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{-x} \left (x^{3}-10 x^{2}+35 x -48\right )}{24 x^{4}-288 x^{3}+1296 x^{2}-2592 x +1944}-\frac {{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{24}\right )+{\mathrm e}^{2 x}+405 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-x} \left (x^{3}-10 x^{2}+35 x -24\right )}{24 \left (x^{4}-12 x^{3}+54 x^{2}-108 x +81\right )}+\frac {{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{24}\right )-270 \,{\mathrm e}^{4} \left (-\frac {{\mathrm e}^{-x} \left (x^{3}-10 x^{2}+43 x -48\right )}{8 \left (x^{4}-12 x^{3}+54 x^{2}-108 x +81\right )}+\frac {{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{8}\right )+90 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{-x} x \left (x^{2}-18 x +27\right )}{8 x^{4}-96 x^{3}+432 x^{2}-864 x +648}-\frac {{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{8}\right )-15 \,{\mathrm e}^{4} \left (\frac {3 \,{\mathrm e}^{-x} \left (x^{3}-42 x^{2}+147 x -144\right )}{8 \left (x^{4}-12 x^{3}+54 x^{2}-108 x +81\right )}-\frac {11 \,{\mathrm e}^{-3} \expIntegralEi \left (1, x -3\right )}{8}\right )\) | \(332\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x^{5} - 15 \, x^{4} + 90 \, x^{3} - 270 \, x^{2} + 405 \, x - 243\right )} e^{\left (2 \, x\right )} - {\left (x^{5} e^{4} - 15 \, x^{4} e^{4} + 90 \, x^{3} e^{4} - 270 \, x^{2} e^{4} + 405 \, x e^{4}\right )} e^{\left (-x\right )} + x - 3}{x^{5} - 15 \, x^{4} + 90 \, x^{3} - 270 \, x^{2} + 405 \, x - 243} + \frac {243 \, e E_{5}\left (x - 3\right )}{{\left (x - 3\right )}^{4}} - 1215 \, \int \frac {e^{\left (-x + 4\right )}}{x^{6} - 18 \, x^{5} + 135 \, x^{4} - 540 \, x^{3} + 1215 \, x^{2} - 1458 \, x + 729}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.67, size = 55, normalized size = 2.75 \begin {gather*} \frac {{\mathrm {e}}^x}{81\,{\mathrm {e}}^x+54\,x^2\,{\mathrm {e}}^x-12\,x^3\,{\mathrm {e}}^x+x^4\,{\mathrm {e}}^x-108\,x\,{\mathrm {e}}^x}-{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^4-{\mathrm {e}}^{3\,x}+\frac {{\mathrm {e}}^x}{81}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 32, normalized size = 1.60 \begin {gather*} e^{2 x} - e^{4} e^{- x} + \frac {4}{4 x^{4} - 48 x^{3} + 216 x^{2} - 432 x + 324} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________