Optimal. Leaf size=25 \[ \frac {x}{4 \left (-3 e^{2 x} (4-x)+x-\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+e^{2 x} \left (-12+24 x-6 x^2\right )-\log (x)}{4 x^2+e^{2 x} \left (-96 x+24 x^2\right )+e^{4 x} \left (576-288 x+36 x^2\right )+\left (e^{2 x} (96-24 x)-8 x\right ) \log (x)+4 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-6 e^{2 x} \left (2-4 x+x^2\right )-\log (x)}{4 \left (3 e^{2 x} (-4+x)+x-\log (x)\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {1-6 e^{2 x} \left (2-4 x+x^2\right )-\log (x)}{\left (3 e^{2 x} (-4+x)+x-\log (x)\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {2 \left (2-4 x+x^2\right )}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )}+\frac {-4+5 x-8 x^2+2 x^3+7 x \log (x)-2 x^2 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-4+5 x-8 x^2+2 x^3+7 x \log (x)-2 x^2 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\frac {1}{2} \int \frac {2-4 x+x^2}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )} \, dx\\ &=\frac {1}{4} \int \left (-\frac {4}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {5 x}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}-\frac {8 x^2}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {2 x^3}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {7 x \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}-\frac {2 x^2 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx-\frac {1}{2} \int \left (\frac {2}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )}+\frac {x}{-12 e^{2 x}+x+3 e^{2 x} x-\log (x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x^3}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\frac {1}{2} \int \frac {x}{-12 e^{2 x}+x+3 e^{2 x} x-\log (x)} \, dx-\frac {1}{2} \int \frac {x^2 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+\frac {5}{4} \int \frac {x}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+\frac {7}{4} \int \frac {x \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-2 \int \frac {x^2}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )} \, dx\\ &=\frac {1}{2} \int \left (\frac {16}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {64}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {4 x}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {x^2}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx-\frac {1}{2} \int \frac {x}{-12 e^{2 x}+x+3 e^{2 x} x-\log (x)} \, dx-\frac {1}{2} \int \left (\frac {4 \log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {16 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {x \log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx+\frac {5}{4} \int \left (\frac {1}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {4}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx+\frac {7}{4} \int \left (\frac {\log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {4 \log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx-2 \int \left (\frac {4}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {16}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}+\frac {x}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2}\right ) \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )} \, dx\\ &=\frac {1}{2} \int \frac {x^2}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\frac {1}{2} \int \frac {x}{-12 e^{2 x}+x+3 e^{2 x} x-\log (x)} \, dx-\frac {1}{2} \int \frac {x \log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+\frac {5}{4} \int \frac {1}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+\frac {7}{4} \int \frac {\log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-2 \int \frac {\log (x)}{\left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+5 \int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx+7 \int \frac {\log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-8 \int \frac {\log (x)}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )^2} \, dx-\int \frac {1}{(-4+x) \left (-12 e^{2 x}+x+3 e^{2 x} x-\log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.10, size = 23, normalized size = 0.92 \begin {gather*} \frac {x}{4 \left (3 e^{2 x} (-4+x)+x-\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 0.80 \begin {gather*} \frac {x}{4 \, {\left (3 \, {\left (x - 4\right )} e^{\left (2 \, x\right )} + x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 24, normalized size = 0.96 \begin {gather*} \frac {x}{4 \, {\left (3 \, x e^{\left (2 \, x\right )} + x - 12 \, e^{\left (2 \, x\right )} - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 1.00
method | result | size |
risch | \(\frac {x}{12 x \,{\mathrm e}^{2 x}+4 x -48 \,{\mathrm e}^{2 x}-4 \ln \relax (x )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 20, normalized size = 0.80 \begin {gather*} \frac {x}{4 \, {\left (3 \, {\left (x - 4\right )} e^{\left (2 \, x\right )} + x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \relax (x)+{\mathrm {e}}^{2\,x}\,\left (6\,x^2-24\,x+12\right )-1}{{\mathrm {e}}^{4\,x}\,\left (36\,x^2-288\,x+576\right )-{\mathrm {e}}^{2\,x}\,\left (96\,x-24\,x^2\right )+4\,{\ln \relax (x)}^2-\ln \relax (x)\,\left (8\,x+{\mathrm {e}}^{2\,x}\,\left (24\,x-96\right )\right )+4\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 19, normalized size = 0.76 \begin {gather*} \frac {x}{4 x + \left (12 x - 48\right ) e^{2 x} - 4 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________