Optimal. Leaf size=20 \[ x+\frac {1}{64} e^{-2 x} \left (2+4 (9+x)^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 33, normalized size of antiderivative = 1.65, number of steps used = 9, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {12, 6742, 2194, 2176} \begin {gather*} \frac {1}{16} e^{-2 x} x^2+\frac {9}{8} e^{-2 x} x+x+\frac {163 e^{-2 x}}{32} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int e^{-2 x} \left (-145+16 e^{2 x}-34 x-2 x^2\right ) \, dx\\ &=\frac {1}{16} \int \left (16-145 e^{-2 x}-34 e^{-2 x} x-2 e^{-2 x} x^2\right ) \, dx\\ &=x-\frac {1}{8} \int e^{-2 x} x^2 \, dx-\frac {17}{8} \int e^{-2 x} x \, dx-\frac {145}{16} \int e^{-2 x} \, dx\\ &=\frac {145 e^{-2 x}}{32}+x+\frac {17}{16} e^{-2 x} x+\frac {1}{16} e^{-2 x} x^2-\frac {1}{8} \int e^{-2 x} x \, dx-\frac {17}{16} \int e^{-2 x} \, dx\\ &=\frac {81 e^{-2 x}}{16}+x+\frac {9}{8} e^{-2 x} x+\frac {1}{16} e^{-2 x} x^2-\frac {1}{16} \int e^{-2 x} \, dx\\ &=\frac {163 e^{-2 x}}{32}+x+\frac {9}{8} e^{-2 x} x+\frac {1}{16} e^{-2 x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 1.20 \begin {gather*} \frac {1}{16} \left (16 x+e^{-2 x} \left (\frac {163}{2}+18 x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 23, normalized size = 1.15 \begin {gather*} \frac {1}{32} \, {\left (2 \, x^{2} + 32 \, x e^{\left (2 \, x\right )} + 36 \, x + 163\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 24, normalized size = 1.20 \begin {gather*} \frac {1}{16} \, x^{2} e^{\left (-2 \, x\right )} + \frac {9}{8} \, x e^{\left (-2 \, x\right )} + x + \frac {163}{32} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.85
method | result | size |
risch | \(x +\frac {\left (\frac {163}{2}+18 x +x^{2}\right ) {\mathrm e}^{-2 x}}{16}\) | \(17\) |
norman | \(\left (\frac {163}{32}+x \,{\mathrm e}^{2 x}+\frac {9 x}{8}+\frac {x^{2}}{16}\right ) {\mathrm e}^{-2 x}\) | \(22\) |
default | \(x +\frac {163 \,{\mathrm e}^{-2 x}}{32}+\frac {9 x \,{\mathrm e}^{-2 x}}{8}+\frac {x^{2} {\mathrm e}^{-2 x}}{16}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.59, size = 35, normalized size = 1.75 \begin {gather*} \frac {1}{32} \, {\left (2 \, x^{2} + 2 \, x + 1\right )} e^{\left (-2 \, x\right )} + \frac {17}{32} \, {\left (2 \, x + 1\right )} e^{\left (-2 \, x\right )} + x + \frac {145}{32} \, e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 24, normalized size = 1.20 \begin {gather*} x+\frac {163\,{\mathrm {e}}^{-2\,x}}{32}+\frac {9\,x\,{\mathrm {e}}^{-2\,x}}{8}+\frac {x^2\,{\mathrm {e}}^{-2\,x}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.85 \begin {gather*} x + \frac {\left (2 x^{2} + 36 x + 163\right ) e^{- 2 x}}{32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________