Optimal. Leaf size=25 \[ -1+\left (e^{-4+x^2} \sqrt {x}-x+x^2\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 5, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.081, Rules used = {12, 14, 2295, 2304, 2288} \begin {gather*} x^2 \log (x)+e^{x^2-4} \sqrt {x} \log (x)-x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2295
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-2 x+2 x^2+\left (-2 x+4 x^2\right ) \log (x)+e^{\frac {1}{2} (-8+\log (x))} \left (2 e^{x^2}+e^{x^2} \left (1+4 x^2\right ) \log (x)\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (2 (-1+x-\log (x)+2 x \log (x))+\frac {e^{-4+x^2} \left (2+\log (x)+4 x^2 \log (x)\right )}{\sqrt {x}}\right ) \, dx\\ &=\frac {1}{2} \int \frac {e^{-4+x^2} \left (2+\log (x)+4 x^2 \log (x)\right )}{\sqrt {x}} \, dx+\int (-1+x-\log (x)+2 x \log (x)) \, dx\\ &=-x+\frac {x^2}{2}+e^{-4+x^2} \sqrt {x} \log (x)+2 \int x \log (x) \, dx-\int \log (x) \, dx\\ &=e^{-4+x^2} \sqrt {x} \log (x)-x \log (x)+x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 27, normalized size = 1.08 \begin {gather*} e^{-4+x^2} \sqrt {x} \log (x)-x \log (x)+x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 26, normalized size = 1.04 \begin {gather*} {\left ({\left (x^{2} - x\right )} e^{4} \log \relax (x) + \sqrt {x} e^{\left (x^{2}\right )} \log \relax (x)\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{2} + {\left ({\left (4 \, x^{2} + 1\right )} e^{\left (x^{2}\right )} \log \relax (x) + 2 \, e^{\left (x^{2}\right )}\right )} e^{\left (\frac {1}{2} \, \log \relax (x) - 4\right )} + 2 \, {\left (2 \, x^{2} - x\right )} \log \relax (x) - 2 \, x}{2 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 27, normalized size = 1.08
method | result | size |
default | \(x^{2} \ln \relax (x )-x \ln \relax (x )+\sqrt {x}\, {\mathrm e}^{\left (x -2\right ) \left (2+x \right )} \ln \relax (x )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, e^{\left (-4\right )} \int x^{\frac {3}{2}} e^{\left (x^{2}\right )} \log \relax (x)\,{d x} - x \log \relax (x) + \frac {1}{2} \, \int 2 \, x {\left (2 \, \log \relax (x) + 1\right )}\,{d x} + \frac {1}{2} \, \int \frac {{\left (\log \relax (x) + 2\right )} e^{\left (x^{2} - 4\right )}}{\sqrt {x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {x-\frac {{\mathrm {e}}^{\frac {\ln \relax (x)}{2}-4}\,\left (2\,{\mathrm {e}}^{x^2}+{\mathrm {e}}^{x^2}\,\ln \relax (x)\,\left (4\,x^2+1\right )\right )}{2}+\frac {\ln \relax (x)\,\left (2\,x-4\,x^2\right )}{2}-x^2}{x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________