Optimal. Leaf size=24 \[ \log (2)+x \left (4-80 \log \left (\frac {5 \left (x+x^2 (4+x)\right )}{x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 16, normalized size of antiderivative = 0.67, number of steps used = 13, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {6728, 1657, 632, 31, 2523} \begin {gather*} 4 x-80 x \log \left (5 \left (x+\frac {1}{x}+4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 632
Rule 1657
Rule 2523
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4 \left (-21-4 x+19 x^2\right )}{1+4 x+x^2}-80 \log \left (5 \left (4+\frac {1}{x}+x\right )\right )\right ) \, dx\\ &=-\left (4 \int \frac {-21-4 x+19 x^2}{1+4 x+x^2} \, dx\right )-80 \int \log \left (5 \left (4+\frac {1}{x}+x\right )\right ) \, dx\\ &=-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right )-4 \int \left (19-\frac {40 (1+2 x)}{1+4 x+x^2}\right ) \, dx+80 \int \frac {-1+x^2}{1+4 x+x^2} \, dx\\ &=-76 x-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right )+80 \int \left (1-\frac {2 (1+2 x)}{1+4 x+x^2}\right ) \, dx+160 \int \frac {1+2 x}{1+4 x+x^2} \, dx\\ &=4 x-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right )-160 \int \frac {1+2 x}{1+4 x+x^2} \, dx+\left (80 \left (2-\sqrt {3}\right )\right ) \int \frac {1}{2-\sqrt {3}+x} \, dx+\left (80 \left (2+\sqrt {3}\right )\right ) \int \frac {1}{2+\sqrt {3}+x} \, dx\\ &=4 x+80 \left (2-\sqrt {3}\right ) \log \left (2-\sqrt {3}+x\right )+80 \left (2+\sqrt {3}\right ) \log \left (2+\sqrt {3}+x\right )-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right )-\left (80 \left (2-\sqrt {3}\right )\right ) \int \frac {1}{2-\sqrt {3}+x} \, dx-\left (80 \left (2+\sqrt {3}\right )\right ) \int \frac {1}{2+\sqrt {3}+x} \, dx\\ &=4 x-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 16, normalized size = 0.67 \begin {gather*} 4 x-80 x \log \left (5 \left (4+\frac {1}{x}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 21, normalized size = 0.88 \begin {gather*} -80 \, x \log \left (\frac {5 \, {\left (x^{2} + 4 \, x + 1\right )}}{x}\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 21, normalized size = 0.88 \begin {gather*} -80 \, x \log \left (\frac {5 \, {\left (x^{2} + 4 \, x + 1\right )}}{x}\right ) + 4 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 23, normalized size = 0.96
method | result | size |
norman | \(4 x -80 x \ln \left (\frac {5 x^{2}+20 x +5}{x}\right )\) | \(23\) |
risch | \(4 x -80 x \ln \left (\frac {5 x^{2}+20 x +5}{x}\right )\) | \(23\) |
default | \(4 x -80 x \ln \relax (5)-80 x \ln \left (\frac {x^{2}+4 x +1}{x}\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 41, normalized size = 1.71 \begin {gather*} -80 \, x {\left (\log \relax (5) - 1\right )} - 80 \, {\left (x + 2\right )} \log \left (x^{2} + 4 \, x + 1\right ) + 80 \, x \log \relax (x) - 76 \, x + 160 \, \log \left (x^{2} + 4 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.50, size = 22, normalized size = 0.92 \begin {gather*} 4\,x-80\,x\,\ln \left (\frac {5\,x^2+20\,x+5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.79 \begin {gather*} - 80 x \log {\left (\frac {5 x^{2} + 20 x + 5}{x} \right )} + 4 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________