Optimal. Leaf size=24 \[ \frac {4}{5 e \left (5+e^2-x\right ) x \log (6)} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {12, 1680, 261} \begin {gather*} \frac {4}{5 e \left (-x+e^2+5\right ) x \log (6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-20-4 e^2+8 x}{5 e^5 x^2+e^3 \left (50 x^2-10 x^3\right )+e \left (125 x^2-50 x^3+5 x^4\right )} \, dx}{\log (6)}\\ &=\frac {\operatorname {Subst}\left (\int \frac {128 x}{5 e \left (25+10 e^2+e^4-4 x^2\right )^2} \, dx,x,\frac {-50 e-10 e^3}{20 e}+x\right )}{\log (6)}\\ &=\frac {128 \operatorname {Subst}\left (\int \frac {x}{\left (25+10 e^2+e^4-4 x^2\right )^2} \, dx,x,\frac {-50 e-10 e^3}{20 e}+x\right )}{5 e \log (6)}\\ &=\frac {4}{5 e \left (5+e^2-x\right ) x \log (6)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.00 \begin {gather*} \frac {4}{5 e \left (5+e^2-x\right ) x \log (6)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.76, size = 24, normalized size = 1.00 \begin {gather*} \frac {4}{5 \, {\left (x e^{3} - {\left (x^{2} - 5 \, x\right )} e\right )} \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 14.84, size = 23, normalized size = 0.96
method | result | size |
gosper | \(\frac {4 \,{\mathrm e}^{-1}}{5 x \left ({\mathrm e}^{2}+5-x \right ) \ln \relax (6)}\) | \(23\) |
norman | \(\frac {4 \,{\mathrm e}^{-1}}{5 x \left ({\mathrm e}^{2}+5-x \right ) \ln \relax (6)}\) | \(23\) |
risch | \(\frac {4 \,{\mathrm e}^{-1}}{5 \left (\ln \relax (2)+\ln \relax (3)\right ) x \left ({\mathrm e}^{2}+5-x \right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 1.04 \begin {gather*} -\frac {4}{5 \, {\left (x^{2} e - x {\left (e^{3} + 5 \, e\right )}\right )} \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 20, normalized size = 0.83 \begin {gather*} \frac {4\,{\mathrm {e}}^{-1}}{5\,x\,\ln \relax (6)\,\left ({\mathrm {e}}^2-x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 34, normalized size = 1.42 \begin {gather*} - \frac {4}{5 e x^{2} \log {\relax (6 )} + x \left (- 5 e^{3} \log {\relax (6 )} - 25 e \log {\relax (6 )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________