Optimal. Leaf size=19 \[ e^{2 x-\frac {361}{8} e^{-e^x x} x} \]
________________________________________________________________________________________
Rubi [F] time = 1.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-e^x x+\frac {e^{-e^x x} \left (-361 x^2+16 e^{e^x x} x^2\right )}{8 x}\right ) \left (-361 x+16 e^{e^x x} x+e^x \left (361 x^2+361 x^3\right )\right )}{8 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {\exp \left (-e^x x+\frac {e^{-e^x x} \left (-361 x^2+16 e^{e^x x} x^2\right )}{8 x}\right ) \left (-361 x+16 e^{e^x x} x+e^x \left (361 x^2+361 x^3\right )\right )}{x} \, dx\\ &=\frac {1}{8} \int e^{2 x-e^x x-\frac {361}{8} e^{-e^x x} x} \left (-361+16 e^{e^x x}+361 e^x x (1+x)\right ) \, dx\\ &=\frac {1}{8} \int \left (16 e^{2 x-\frac {361}{8} e^{-e^x x} x}-361 e^{2 x-e^x x-\frac {361}{8} e^{-e^x x} x}+361 e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x (1+x)\right ) \, dx\\ &=2 \int e^{2 x-\frac {361}{8} e^{-e^x x} x} \, dx-\frac {361}{8} \int e^{2 x-e^x x-\frac {361}{8} e^{-e^x x} x} \, dx+\frac {361}{8} \int e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x (1+x) \, dx\\ &=2 \int e^{2 x-\frac {361}{8} e^{-e^x x} x} \, dx-\frac {361}{8} \int e^{2 x-e^x x-\frac {361}{8} e^{-e^x x} x} \, dx+\frac {361}{8} \int \left (e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x+e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x^2\right ) \, dx\\ &=2 \int e^{2 x-\frac {361}{8} e^{-e^x x} x} \, dx-\frac {361}{8} \int e^{2 x-e^x x-\frac {361}{8} e^{-e^x x} x} \, dx+\frac {361}{8} \int e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x \, dx+\frac {361}{8} \int e^{3 x-e^x x-\frac {361}{8} e^{-e^x x} x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.58, size = 19, normalized size = 1.00 \begin {gather*} e^{2 x-\frac {361}{8} e^{-e^x x} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 47, normalized size = 2.47 \begin {gather*} e^{\left (-\frac {1}{8} \, {\left (361 \, x^{2} + 8 \, {\left (x e^{x} - 2 \, x + \log \relax (x)\right )} e^{\left (x e^{x} + \log \relax (x)\right )}\right )} e^{\left (-x e^{x} - \log \relax (x)\right )} + x e^{x} + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{8} \, {\left (361 \, {\left (x^{3} + x^{2}\right )} e^{x} - 361 \, x + 16 \, e^{\left (x e^{x} + \log \relax (x)\right )}\right )} e^{\left (-\frac {1}{8} \, {\left (361 \, x^{2} - 16 \, x e^{\left (x e^{x} + \log \relax (x)\right )}\right )} e^{\left (-x e^{x} - \log \relax (x)\right )} - x e^{x} - \log \relax (x)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 20, normalized size = 1.05
method | result | size |
risch | \({\mathrm e}^{\frac {x \left (16 \,{\mathrm e}^{{\mathrm e}^{x} x}-361\right ) {\mathrm e}^{-{\mathrm e}^{x} x}}{8}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 14, normalized size = 0.74 \begin {gather*} e^{\left (-\frac {361}{8} \, x e^{\left (-x e^{x}\right )} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.51, size = 15, normalized size = 0.79 \begin {gather*} {\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-\frac {361\,x\,{\mathrm {e}}^{-x\,{\mathrm {e}}^x}}{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.48, size = 27, normalized size = 1.42 \begin {gather*} e^{\frac {2 \left (x^{2} e^{x e^{x}} - \frac {361 x^{2}}{16}\right ) e^{- x e^{x}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________