3.6.35
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 37, normalized size of antiderivative = 1.48,
number of steps used = 22, number of rules used = 8, integrand size = 59, = 0.136, Rules used
= {6742, 77, 2330, 2298, 2309, 2178, 2555, 12}
Antiderivative was successfully verified.
[In]
Int[(-16 - 16*x + 5*x^2 + (-20*x + 5*x^2)*Log[x] + (-16 - 12*x + 10*x^2)*Log[x]*Log[((-4 - 5*x)*Log[x])/9])/((
36 + 45*x)*Log[x]),x]
[Out]
(-4*x*Log[-1/9*((4 + 5*x)*Log[x])])/9 + (x^2*Log[-1/9*((4 + 5*x)*Log[x])])/9
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 77
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2298
Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2330
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))
Rule 2555
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 0.80
Antiderivative was successfully verified.
[In]
Integrate[(-16 - 16*x + 5*x^2 + (-20*x + 5*x^2)*Log[x] + (-16 - 12*x + 10*x^2)*Log[x]*Log[((-4 - 5*x)*Log[x])/
9])/((36 + 45*x)*Log[x]),x]
[Out]
((-4 + x)*x*Log[-1/9*((4 + 5*x)*Log[x])])/9
________________________________________________________________________________________
fricas [A] time = 0.81, size = 19, normalized size = 0.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="fricas")
[Out]
1/9*(x^2 - 4*x)*log(-1/9*(5*x + 4)*log(x))
________________________________________________________________________________________
giac [B] time = 0.68, size = 33, normalized size = 1.32
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="giac")
[Out]
-2/9*x^2*log(3) + 8/9*x*log(3) + 1/9*(x^2 - 4*x)*log(-5*x*log(x) - 4*log(x))
________________________________________________________________________________________
maple [A] time = 0.33, size = 30, normalized size = 1.20
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((10*x^2-12*x-16)*ln(x)*ln(1/9*(-5*x-4)*ln(x))+(5*x^2-20*x)*ln(x)+5*x^2-16*x-16)/(45*x+36)/ln(x),x,method=
_RETURNVERBOSE)
[Out]
-4/9*x*ln(1/9*(-5*x-4)*ln(x))+1/9*x^2*ln(1/9*(-5*x-4)*ln(x))
________________________________________________________________________________________
maxima [B] time = 0.67, size = 40, normalized size = 1.60
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="maxima")
[Out]
-2/9*x^2*log(3) + 8/9*x*log(3) + 1/9*(x^2 - 4*x)*log(-5*x - 4) + 1/9*(x^2 - 4*x)*log(log(x))
________________________________________________________________________________________
mupad [B] time = 0.94, size = 21, normalized size = 0.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(16*x + log(x)*(20*x - 5*x^2) - 5*x^2 + log(x)*log(-(log(x)*(5*x + 4))/9)*(12*x - 10*x^2 + 16) + 16)/(log
(x)*(45*x + 36)),x)
[Out]
-log(-(log(x)*(5*x + 4))/9)*((4*x)/9 - x^2/9)
________________________________________________________________________________________
sympy [B] time = 0.66, size = 46, normalized size = 1.84
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((10*x**2-12*x-16)*ln(x)*ln(1/9*(-5*x-4)*ln(x))+(5*x**2-20*x)*ln(x)+5*x**2-16*x-16)/(45*x+36)/ln(x),
x)
[Out]
(x**2/9 - 4*x/9 - 16/225)*log((-5*x/9 - 4/9)*log(x)) + 16*log(225*x + 180)/225 + 16*log(log(x))/225
________________________________________________________________________________________