3.6.35 1616x+5x2+(20x+5x2)log(x)+(1612x+10x2)log(x)log(19(45x)log(x))(36+45x)log(x)dx

Optimal. Leaf size=25 19(4+x)xlog((x+19(4+4x))log(x))

________________________________________________________________________________________

Rubi [A]  time = 0.56, antiderivative size = 37, normalized size of antiderivative = 1.48, number of steps used = 22, number of rules used = 8, integrand size = 59, number of rulesintegrand size = 0.136, Rules used = {6742, 77, 2330, 2298, 2309, 2178, 2555, 12} 19x2log(19(5x+4)log(x))49xlog(19(5x+4)log(x))

Antiderivative was successfully verified.

[In]

Int[(-16 - 16*x + 5*x^2 + (-20*x + 5*x^2)*Log[x] + (-16 - 12*x + 10*x^2)*Log[x]*Log[((-4 - 5*x)*Log[x])/9])/((
36 + 45*x)*Log[x]),x]

[Out]

(-4*x*Log[-1/9*((4 + 5*x)*Log[x])])/9 + (x^2*Log[-1/9*((4 + 5*x)*Log[x])])/9

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2298

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2330

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))

Rule 2555

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[w*Simplify
[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=((4+x)(4+5x+5xlog(x))9(4+5x)log(x)+29(2+x)log(19(4+5x)log(x)))dx=19(4+x)(4+5x+5xlog(x))(4+5x)log(x)dx+29(2+x)log(19(4+5x)log(x))dx=49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))+19(5(4+x)x4+5x+4+xlog(x))dx29(4x)(45x5xlog(x))2(4+5x)log(x)dx=49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))+194+xlog(x)dx19(4x)(45x5xlog(x))(4+5x)log(x)dx+59(4+x)x4+5xdx=49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))19(5(4+x)x4+5x+4+xlog(x))dx+19(4log(x)+xlog(x))dx+59(2425+x5+9625(4+5x))dx=8x15+x218+3275log(4+5x)49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))194+xlog(x)dx+19xlog(x)dx491log(x)dx59(4+x)x4+5xdx=8x15+x218+3275log(4+5x)49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))4li(x)919(4log(x)+xlog(x))dx+19Subst(e2xxdx,x,log(x))59(2425+x5+9625(4+5x))dx=19Ei(2log(x))49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))4li(x)919xlog(x)dx+491log(x)dx=19Ei(2log(x))49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))19Subst(e2xxdx,x,log(x))=49xlog(19(4+5x)log(x))+19x2log(19(4+5x)log(x))

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 20, normalized size = 0.80 19(4+x)xlog(19(4+5x)log(x))

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 16*x + 5*x^2 + (-20*x + 5*x^2)*Log[x] + (-16 - 12*x + 10*x^2)*Log[x]*Log[((-4 - 5*x)*Log[x])/
9])/((36 + 45*x)*Log[x]),x]

[Out]

((-4 + x)*x*Log[-1/9*((4 + 5*x)*Log[x])])/9

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 19, normalized size = 0.76 19(x24x)log(19(5x+4)log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="fricas")

[Out]

1/9*(x^2 - 4*x)*log(-1/9*(5*x + 4)*log(x))

________________________________________________________________________________________

giac [B]  time = 0.68, size = 33, normalized size = 1.32 29x2log(3)+89xlog(3)+19(x24x)log(5xlog(x)4log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="giac")

[Out]

-2/9*x^2*log(3) + 8/9*x*log(3) + 1/9*(x^2 - 4*x)*log(-5*x*log(x) - 4*log(x))

________________________________________________________________________________________

maple [A]  time = 0.33, size = 30, normalized size = 1.20




method result size



norman 4xln((5x4)ln(x)9)9+x2ln((5x4)ln(x)9)9 30
risch x2ln(5)92x2ln(3)94xln(ln(x))9+x2ln(ln(x))94xln(5)9+8xln(3)9+iπx292iπxcsgn(iln(x)(x+45))39+iπx2csgn(iln(x)(x+45))3182iπxcsgn(iln(x))csgn(iln(x)(x+45))29iπx2csgn(iln(x))csgn(i(x+45))csgn(iln(x)(x+45))182iπxcsgn(i(x+45))csgn(iln(x)(x+45))29+iπx2csgn(i(x+45))csgn(iln(x)(x+45))218+iπx2csgn(iln(x))csgn(iln(x)(x+45))218+2iπxcsgn(iln(x))csgn(i(x+45))csgn(iln(x)(x+45))9iπx2csgn(iln(x)(x+45))29+(19x249x)ln(x+45)+4iπxcsgn(iln(x)(x+45))294iπx9 284



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((10*x^2-12*x-16)*ln(x)*ln(1/9*(-5*x-4)*ln(x))+(5*x^2-20*x)*ln(x)+5*x^2-16*x-16)/(45*x+36)/ln(x),x,method=
_RETURNVERBOSE)

[Out]

-4/9*x*ln(1/9*(-5*x-4)*ln(x))+1/9*x^2*ln(1/9*(-5*x-4)*ln(x))

________________________________________________________________________________________

maxima [B]  time = 0.67, size = 40, normalized size = 1.60 29x2log(3)+89xlog(3)+19(x24x)log(5x4)+19(x24x)log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^2-12*x-16)*log(x)*log(1/9*(-5*x-4)*log(x))+(5*x^2-20*x)*log(x)+5*x^2-16*x-16)/(45*x+36)/log(x
),x, algorithm="maxima")

[Out]

-2/9*x^2*log(3) + 8/9*x*log(3) + 1/9*(x^2 - 4*x)*log(-5*x - 4) + 1/9*(x^2 - 4*x)*log(log(x))

________________________________________________________________________________________

mupad [B]  time = 0.94, size = 21, normalized size = 0.84 ln(ln(x)(5x+4)9)(4x9x29)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(16*x + log(x)*(20*x - 5*x^2) - 5*x^2 + log(x)*log(-(log(x)*(5*x + 4))/9)*(12*x - 10*x^2 + 16) + 16)/(log
(x)*(45*x + 36)),x)

[Out]

-log(-(log(x)*(5*x + 4))/9)*((4*x)/9 - x^2/9)

________________________________________________________________________________________

sympy [B]  time = 0.66, size = 46, normalized size = 1.84 (x294x916225)log((5x949)log(x))+16log(225x+180)225+16log(log(x))225

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x**2-12*x-16)*ln(x)*ln(1/9*(-5*x-4)*ln(x))+(5*x**2-20*x)*ln(x)+5*x**2-16*x-16)/(45*x+36)/ln(x),
x)

[Out]

(x**2/9 - 4*x/9 - 16/225)*log((-5*x/9 - 4/9)*log(x)) + 16*log(225*x + 180)/225 + 16*log(log(x))/225

________________________________________________________________________________________