3.6.36
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [B] time = 0.24, antiderivative size = 96, normalized size of antiderivative = 3.31,
number of steps used = 6, number of rules used = 3, integrand size = 88, = 0.034, Rules used =
{14, 2194, 2288}
Antiderivative was successfully verified.
[In]
Int[(E^x*x^5 + E^(-6*x + 56*x^2)*(-4 - 6*x + 112*x^2) + E^(-6*x + 29*x^2)*(6*x + 12*x^2 - 116*x^3) + E^(-6*x +
2*x^2)*(-2*x^2 - 6*x^3 + 4*x^4))/x^5,x]
[Out]
E^x + (3*x - 56*x^2)/(E^(2*(3 - 28*x)*x)*(3 - 56*x)*x^5) - (2*E^(-6*x + 29*x^2)*(3*x - 29*x^2))/((3 - 29*x)*x^
4) + (3*x - 2*x^2)/(E^(2*(3 - x)*x)*(3 - 2*x)*x^3)
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 47, normalized size = 1.62
Antiderivative was successfully verified.
[In]
Integrate[(E^x*x^5 + E^(-6*x + 56*x^2)*(-4 - 6*x + 112*x^2) + E^(-6*x + 29*x^2)*(6*x + 12*x^2 - 116*x^3) + E^(
-6*x + 2*x^2)*(-2*x^2 - 6*x^3 + 4*x^4))/x^5,x]
[Out]
(E^(56*x^2) - 2*E^(29*x^2)*x + E^(2*x^2)*x^2 + E^(7*x)*x^4)/(E^(6*x)*x^4)
________________________________________________________________________________________
fricas [A] time = 0.65, size = 48, normalized size = 1.66
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="fricas")
[Out]
(x^4*e^x + x^2*e^(2*x^2 - 6*x) - 2*x*e^(29*x^2 - 6*x) + e^(56*x^2 - 6*x))/x^4
________________________________________________________________________________________
giac [A] time = 0.30, size = 48, normalized size = 1.66
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="giac")
[Out]
(x^4*e^x + x^2*e^(2*x^2 - 6*x) - 2*x*e^(29*x^2 - 6*x) + e^(56*x^2 - 6*x))/x^4
________________________________________________________________________________________
maple [A] time = 0.12, size = 41, normalized size = 1.41
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^4-6*x^
3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x,method=_RETURNVERBOSE)
[Out]
exp(x)+1/x^4*exp(2*x*(28*x-3))-2/x^3*exp(x*(29*x-6))+1/x^2*exp(2*x*(x-3))
________________________________________________________________________________________
maxima [A] time = 0.61, size = 37, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="maxima")
[Out]
(x^2*e^(2*x^2) - 2*x*e^(29*x^2) + e^(56*x^2))*e^(-6*x)/x^4 + e^x
________________________________________________________________________________________
mupad [B] time = 0.67, size = 46, normalized size = 1.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x^5*exp(x) - exp(2*x^2 - 6*x)*(2*x^2 + 6*x^3 - 4*x^4) - exp(54*x^2)*exp(2*x^2 - 6*x)*(6*x - 112*x^2 + 4)
+ exp(27*x^2)*exp(2*x^2 - 6*x)*(6*x + 12*x^2 - 116*x^3))/x^5,x)
[Out]
exp(x) + exp(2*x^2 - 6*x)/x^2 - (2*exp(29*x^2 - 6*x))/x^3 + exp(56*x^2 - 6*x)/x^4
________________________________________________________________________________________
sympy [B] time = 1.14, size = 68, normalized size = 2.34
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((112*x**2-6*x-4)*exp(x**2-3*x)**2*exp(27*x**2)**2+(-116*x**3+12*x**2+6*x)*exp(x**2-3*x)**2*exp(27*x
**2)+(4*x**4-6*x**3-2*x**2)*exp(x**2-3*x)**2+x**5*exp(x))/x**5,x)
[Out]
exp(x) + (x**7*exp(12*x)*exp(27*x**2)**(2/27) - 2*x**6*exp(12*x)*exp(27*x**2)**(29/27) + x**5*exp(12*x)*exp(27
*x**2)**(56/27))*exp(-18*x)/x**9
________________________________________________________________________________________