3.6.36 exx5+e6x+56x2(46x+112x2)+e6x+29x2(6x+12x2116x3)+e6x+2x2(2x26x3+4x4)x5dx

Optimal. Leaf size=29 ex+e2(3+x)x(e27x2+x)2x4

________________________________________________________________________________________

Rubi [B]  time = 0.24, antiderivative size = 96, normalized size of antiderivative = 3.31, number of steps used = 6, number of rules used = 3, integrand size = 88, number of rulesintegrand size = 0.034, Rules used = {14, 2194, 2288} e2(328x)x(3x56x2)(356x)x52e29x26x(3x29x2)(329x)x4+e2(3x)x(3x2x2)(32x)x3+ex

Antiderivative was successfully verified.

[In]

Int[(E^x*x^5 + E^(-6*x + 56*x^2)*(-4 - 6*x + 112*x^2) + E^(-6*x + 29*x^2)*(6*x + 12*x^2 - 116*x^3) + E^(-6*x +
 2*x^2)*(-2*x^2 - 6*x^3 + 4*x^4))/x^5,x]

[Out]

E^x + (3*x - 56*x^2)/(E^(2*(3 - 28*x)*x)*(3 - 56*x)*x^5) - (2*E^(-6*x + 29*x^2)*(3*x - 29*x^2))/((3 - 29*x)*x^
4) + (3*x - 2*x^2)/(E^(2*(3 - x)*x)*(3 - 2*x)*x^3)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=(ex+2e6x+29x2(3+6x58x2)x4+2e2(3+x)x(13x+2x2)x3+2e2x(3+28x)(23x+56x2)x5)dx=2e6x+29x2(3+6x58x2)x4dx+2e2(3+x)x(13x+2x2)x3dx+2e2x(3+28x)(23x+56x2)x5dx+exdx=ex+e2(328x)x(3x56x2)(356x)x52e6x+29x2(3x29x2)(329x)x4+e2(3x)x(3x2x2)(32x)x3

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 47, normalized size = 1.62 e6x(e56x22e29x2x+e2x2x2+e7xx4)x4

Antiderivative was successfully verified.

[In]

Integrate[(E^x*x^5 + E^(-6*x + 56*x^2)*(-4 - 6*x + 112*x^2) + E^(-6*x + 29*x^2)*(6*x + 12*x^2 - 116*x^3) + E^(
-6*x + 2*x^2)*(-2*x^2 - 6*x^3 + 4*x^4))/x^5,x]

[Out]

(E^(56*x^2) - 2*E^(29*x^2)*x + E^(2*x^2)*x^2 + E^(7*x)*x^4)/(E^(6*x)*x^4)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 48, normalized size = 1.66 x4ex+x2e(2x26x)2xe(29x26x)+e(56x26x)x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="fricas")

[Out]

(x^4*e^x + x^2*e^(2*x^2 - 6*x) - 2*x*e^(29*x^2 - 6*x) + e^(56*x^2 - 6*x))/x^4

________________________________________________________________________________________

giac [A]  time = 0.30, size = 48, normalized size = 1.66 x4ex+x2e(2x26x)2xe(29x26x)+e(56x26x)x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="giac")

[Out]

(x^4*e^x + x^2*e^(2*x^2 - 6*x) - 2*x*e^(29*x^2 - 6*x) + e^(56*x^2 - 6*x))/x^4

________________________________________________________________________________________

maple [A]  time = 0.12, size = 41, normalized size = 1.41




method result size



risch ex+e2x(28x3)x42ex(29x6)x3+e2x(x3)x2 41



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^4-6*x^
3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x,method=_RETURNVERBOSE)

[Out]

exp(x)+1/x^4*exp(2*x*(28*x-3))-2/x^3*exp(x*(29*x-6))+1/x^2*exp(2*x*(x-3))

________________________________________________________________________________________

maxima [A]  time = 0.61, size = 37, normalized size = 1.28 (x2e(2x2)2xe(29x2)+e(56x2))e(6x)x4+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((112*x^2-6*x-4)*exp(x^2-3*x)^2*exp(27*x^2)^2+(-116*x^3+12*x^2+6*x)*exp(x^2-3*x)^2*exp(27*x^2)+(4*x^
4-6*x^3-2*x^2)*exp(x^2-3*x)^2+x^5*exp(x))/x^5,x, algorithm="maxima")

[Out]

(x^2*e^(2*x^2) - 2*x*e^(29*x^2) + e^(56*x^2))*e^(-6*x)/x^4 + e^x

________________________________________________________________________________________

mupad [B]  time = 0.67, size = 46, normalized size = 1.59 ex+e2x26xx22e29x26xx3+e56x26xx4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^5*exp(x) - exp(2*x^2 - 6*x)*(2*x^2 + 6*x^3 - 4*x^4) - exp(54*x^2)*exp(2*x^2 - 6*x)*(6*x - 112*x^2 + 4)
+ exp(27*x^2)*exp(2*x^2 - 6*x)*(6*x + 12*x^2 - 116*x^3))/x^5,x)

[Out]

exp(x) + exp(2*x^2 - 6*x)/x^2 - (2*exp(29*x^2 - 6*x))/x^3 + exp(56*x^2 - 6*x)/x^4

________________________________________________________________________________________

sympy [B]  time = 1.14, size = 68, normalized size = 2.34 ex+(x7e12x(e27x2)2272x6e12x(e27x2)2927+x5e12x(e27x2)5627)e18xx9

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((112*x**2-6*x-4)*exp(x**2-3*x)**2*exp(27*x**2)**2+(-116*x**3+12*x**2+6*x)*exp(x**2-3*x)**2*exp(27*x
**2)+(4*x**4-6*x**3-2*x**2)*exp(x**2-3*x)**2+x**5*exp(x))/x**5,x)

[Out]

exp(x) + (x**7*exp(12*x)*exp(27*x**2)**(2/27) - 2*x**6*exp(12*x)*exp(27*x**2)**(29/27) + x**5*exp(12*x)*exp(27
*x**2)**(56/27))*exp(-18*x)/x**9

________________________________________________________________________________________