Optimal. Leaf size=21 \[ \frac {4 e^{-20 (-1+x)+x}}{\log \left (2-\frac {33 x}{32}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {2288} \begin {gather*} \frac {4 e^{20-19 x}}{\log \left (\frac {1}{32} (64-33 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{20-19 x}}{\log \left (\frac {1}{32} (64-33 x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.90 \begin {gather*} \frac {4 e^{20-19 x}}{\log \left (2-\frac {33 x}{32}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 3.07, size = 17, normalized size = 0.81 \begin {gather*} 4 \, e^{\left (-19 \, x - \log \left (\log \left (-\frac {33}{32} \, x + 2\right )\right ) + 20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 1.10 \begin {gather*} -\frac {4 \, e^{\left (-19 \, x + 20\right )}}{5 \, \log \relax (2) - \log \left (-33 \, x + 64\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 17, normalized size = 0.81
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{20-19 x}}{\ln \left (-\frac {33 x}{32}+2\right )}\) | \(17\) |
norman | \(\frac {4 \,{\mathrm e}^{20-19 x}}{\ln \left (-\frac {33 x}{32}+2\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 27, normalized size = 1.29 \begin {gather*} -\frac {4 \, e^{20}}{5 \, e^{\left (19 \, x\right )} \log \relax (2) - e^{\left (19 \, x\right )} \log \left (-33 \, x + 64\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.27, size = 16, normalized size = 0.76 \begin {gather*} \frac {4\,{\mathrm {e}}^{-19\,x}\,{\mathrm {e}}^{20}}{\ln \left (2-\frac {33\,x}{32}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 15, normalized size = 0.71 \begin {gather*} \frac {4 e^{20 - 19 x}}{\log {\left (2 - \frac {33 x}{32} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________