Optimal. Leaf size=30 \[ \frac {3 \left (3+\left (1+\frac {-x+x^2}{x}\right )^2\right )}{5 \left (\frac {4}{x}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 18, normalized size of antiderivative = 0.60, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {28, 1157, 21, 8} \begin {gather*} \frac {3 x}{5}-\frac {3 x}{5 \left (x^2+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 21
Rule 28
Rule 1157
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 \int \frac {36+27 x^2+3 x^4}{\left (20+5 x^2\right )^2} \, dx\\ &=-\frac {3 x}{5 \left (4+x^2\right )}-\frac {1}{8} \int \frac {-96-24 x^2}{20+5 x^2} \, dx\\ &=-\frac {3 x}{5 \left (4+x^2\right )}+\frac {3 \int 1 \, dx}{5}\\ &=\frac {3 x}{5}-\frac {3 x}{5 \left (4+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.53 \begin {gather*} \frac {3}{5} \left (x-\frac {x}{4+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 16, normalized size = 0.53 \begin {gather*} \frac {3 \, {\left (x^{3} + 3 \, x\right )}}{5 \, {\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 14, normalized size = 0.47 \begin {gather*} \frac {3}{5} \, x - \frac {3 \, x}{5 \, {\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.50
method | result | size |
default | \(\frac {3 x}{5}-\frac {3 x}{5 \left (x^{2}+4\right )}\) | \(15\) |
risch | \(\frac {3 x}{5}-\frac {3 x}{5 \left (x^{2}+4\right )}\) | \(15\) |
gosper | \(\frac {3 \left (x^{2}+3\right ) x}{5 \left (x^{2}+4\right )}\) | \(16\) |
norman | \(\frac {\frac {9}{5} x +\frac {3}{5} x^{3}}{x^{2}+4}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 0.47 \begin {gather*} \frac {3}{5} \, x - \frac {3 \, x}{5 \, {\left (x^{2} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.44, size = 17, normalized size = 0.57 \begin {gather*} \frac {3\,x\,\left (x^2+3\right )}{5\,\left (x^2+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 14, normalized size = 0.47 \begin {gather*} \frac {3 x}{5} - \frac {3 x}{5 x^{2} + 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________