Optimal. Leaf size=27 \[ \frac {x \left (5+e^{e^5+3 x} \left (e^2+\log (5)\right )^2\right )}{-2+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 54, normalized size of antiderivative = 2.00, number of steps used = 10, number of rules used = 7, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.101, Rules used = {27, 6688, 6742, 2199, 2194, 2177, 2178} \begin {gather*} -\frac {10}{2-x}+e^{3 x+e^5} \left (e^2+\log (5)\right )^2-\frac {2 e^{3 x+e^5} \left (e^2+\log (5)\right )^2}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+e^{e^5+3 x} \left (e^4 \left (-2-6 x+3 x^2\right )+e^2 \left (-4-12 x+6 x^2\right ) \log (5)+\left (-2-6 x+3 x^2\right ) \log ^2(5)\right )}{(-2+x)^2} \, dx\\ &=\int \frac {-10+e^{e^5+3 x} \left (-2-6 x+3 x^2\right ) \left (e^2+\log (5)\right )^2}{(2-x)^2} \, dx\\ &=\int \left (-\frac {10}{(-2+x)^2}+\frac {e^{e^5+3 x} \left (-2-6 x+3 x^2\right ) \left (e^2+\log (5)\right )^2}{(-2+x)^2}\right ) \, dx\\ &=-\frac {10}{2-x}+\left (e^2+\log (5)\right )^2 \int \frac {e^{e^5+3 x} \left (-2-6 x+3 x^2\right )}{(-2+x)^2} \, dx\\ &=-\frac {10}{2-x}+\left (e^2+\log (5)\right )^2 \int \left (3 e^{e^5+3 x}-\frac {2 e^{e^5+3 x}}{(-2+x)^2}+\frac {6 e^{e^5+3 x}}{-2+x}\right ) \, dx\\ &=-\frac {10}{2-x}-\left (2 \left (e^2+\log (5)\right )^2\right ) \int \frac {e^{e^5+3 x}}{(-2+x)^2} \, dx+\left (3 \left (e^2+\log (5)\right )^2\right ) \int e^{e^5+3 x} \, dx+\left (6 \left (e^2+\log (5)\right )^2\right ) \int \frac {e^{e^5+3 x}}{-2+x} \, dx\\ &=-\frac {10}{2-x}+e^{e^5+3 x} \left (e^2+\log (5)\right )^2-\frac {2 e^{e^5+3 x} \left (e^2+\log (5)\right )^2}{2-x}+6 e^{6+e^5} \text {Ei}(-3 (2-x)) \left (e^2+\log (5)\right )^2-\left (6 \left (e^2+\log (5)\right )^2\right ) \int \frac {e^{e^5+3 x}}{-2+x} \, dx\\ &=-\frac {10}{2-x}+e^{e^5+3 x} \left (e^2+\log (5)\right )^2-\frac {2 e^{e^5+3 x} \left (e^2+\log (5)\right )^2}{2-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 27, normalized size = 1.00 \begin {gather*} \frac {10+e^{e^5+3 x} x \left (e^2+\log (5)\right )^2}{-2+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 34, normalized size = 1.26 \begin {gather*} \frac {{\left (2 \, x e^{2} \log \relax (5) + x \log \relax (5)^{2} + x e^{4}\right )} e^{\left (3 \, x + e^{5}\right )} + 10}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 44, normalized size = 1.63 \begin {gather*} \frac {x e^{\left (3 \, x + e^{5}\right )} \log \relax (5)^{2} + 2 \, x e^{\left (3 \, x + e^{5} + 2\right )} \log \relax (5) + x e^{\left (3 \, x + e^{5} + 4\right )} + 10}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 7.27, size = 33, normalized size = 1.22
method | result | size |
norman | \(\frac {\left ({\mathrm e}^{4}+2 \,{\mathrm e}^{2} \ln \relax (5)+\ln \relax (5)^{2}\right ) x \,{\mathrm e}^{{\mathrm e}^{5}+3 x}+10}{x -2}\) | \(33\) |
risch | \(\frac {10}{x -2}+\frac {\left ({\mathrm e}^{4}+2 \,{\mathrm e}^{2} \ln \relax (5)+\ln \relax (5)^{2}\right ) x \,{\mathrm e}^{{\mathrm e}^{5}+3 x}}{x -2}\) | \(36\) |
derivativedivides | \(6 \,{\mathrm e}^{4} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{4} {\mathrm e}^{10} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{{\mathrm e}^{5}+3 x} \ln \relax (5)^{2}-\frac {30}{-3 x +6}-6 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left ({\mathrm e}^{5}+6\right )}{-3 x +6}-\left ({\mathrm e}^{5}+7\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{4} \left ({\mathrm e}^{{\mathrm e}^{5}+3 x}+\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left (12 \,{\mathrm e}^{5}+{\mathrm e}^{10}+36\right )}{-3 x +6}-\left ({\mathrm e}^{10}+14 \,{\mathrm e}^{5}+48\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+2 \,{\mathrm e}^{{\mathrm e}^{5}+3 x} {\mathrm e}^{2} \ln \relax (5)-6 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )-\frac {12 \,{\mathrm e}^{2} \ln \relax (5) {\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-2 \,{\mathrm e}^{4} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left ({\mathrm e}^{5}+6\right )}{-3 x +6}-\left ({\mathrm e}^{5}+7\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )-\frac {6 \ln \relax (5)^{2} {\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}\) | \(422\) |
default | \(6 \,{\mathrm e}^{4} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{4} {\mathrm e}^{10} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{{\mathrm e}^{5}+3 x} \ln \relax (5)^{2}-\frac {30}{-3 x +6}-6 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left ({\mathrm e}^{5}+6\right )}{-3 x +6}-\left ({\mathrm e}^{5}+7\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+{\mathrm e}^{4} \left ({\mathrm e}^{{\mathrm e}^{5}+3 x}+\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left (12 \,{\mathrm e}^{5}+{\mathrm e}^{10}+36\right )}{-3 x +6}-\left ({\mathrm e}^{10}+14 \,{\mathrm e}^{5}+48\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )+2 \,{\mathrm e}^{{\mathrm e}^{5}+3 x} {\mathrm e}^{2} \ln \relax (5)-6 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-{\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )-\frac {12 \,{\mathrm e}^{2} \ln \relax (5) {\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}-2 \,{\mathrm e}^{4} {\mathrm e}^{5} \left (\frac {{\mathrm e}^{{\mathrm e}^{5}+3 x} \left ({\mathrm e}^{5}+6\right )}{-3 x +6}-\left ({\mathrm e}^{5}+7\right ) {\mathrm e}^{{\mathrm e}^{5}+6} \expIntegralEi \left (1, -3 x +6\right )\right )-\frac {6 \ln \relax (5)^{2} {\mathrm e}^{{\mathrm e}^{5}+3 x}}{-3 x +6}\) | \(422\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {2 \, e^{\left (e^{5} + 6\right )} E_{2}\left (-3 \, x + 6\right ) \log \relax (5)^{2}}{x - 2} + 2 \, \int \frac {e^{\left (3 \, x + e^{5}\right )}}{x^{2} - 4 \, x + 4}\,{d x} \log \relax (5)^{2} + \frac {{\left (e^{\left (e^{5}\right )} \log \relax (5)^{2} + 2 \, e^{\left (e^{5} + 2\right )} \log \relax (5) + e^{\left (e^{5} + 4\right )}\right )} x e^{\left (3 \, x\right )}}{x - 2} + \frac {10}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 26, normalized size = 0.96 \begin {gather*} \frac {5\,x+x\,{\mathrm {e}}^{3\,x+{\mathrm {e}}^5}\,{\left ({\mathrm {e}}^2+\ln \relax (5)\right )}^2}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 37, normalized size = 1.37 \begin {gather*} \frac {\left (x \log {\relax (5 )}^{2} + 2 x e^{2} \log {\relax (5 )} + x e^{4}\right ) e^{3 x + e^{5}}}{x - 2} + \frac {10}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________